Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Области применения урана

    Однако наиболее важной областью применения циркония и до некоторой степени и гафния является в настоящее время ядерная техника [551]. В активной зоне охлаждаемых водой энергетических реакторов цирконий применяют в качестве конструкционного материала, а гафний, в связи с его большим поперечным сечением захвата нейтронов — для управляющих элементов. Цирконием плакируют также тепловыделяющие элементы кипящих реакторов, из него же изготовляют контейнеры для раствора сульфата уранила в водных гомогенных реакторах [551]. [c.203]


    Области применения урана определяются его обычными и специфическими свойствами. До открытия специфических свойств уран применялся в качестве красителя для стекла, фарфора и эмалей, рекомендовался для фотографических целей, для фотоэлектрических приборов, для электродов разрядных трубок и т. д. Есть сведения о том, что велись опыты по использованию урана для легирования стали. [c.386]

    Преобладающей и наиболее значительной областью применения металлического урана является атомная техника как для мирных, так и военных целей. Уран и сплавы на его основе иопользуются как ядерное горючее в реакторах в. виде блоков. [c.713]

    Уран применяется в качестве ядерного горючего. U служит сырьем для получения ядерного горючего 2 Ри. и ззу ляются делящимся материалом. Все другие области применения урана в настоящее время мало существенны. [c.319]

    Рентгеновский флуоресцентный анализ применяют для определения (неразрушающий анализ) всех элементов Периодической системы, начиная с натрия и кончая ураном, в растворах и твердых образцах с Сн на уровне 10-3—10- % при относительном стандартном отклонении в интервале 0,01—0,001. Главные области применения — металлургия (анализ металлов и сплавов) и геология (анализ минералов). Для экологических анализов используется реже, чем другие спектральные методы, однако может быть применен для исследования экологической чистоты различного рода материалов — стекол, керамики, цементов, пластмасс и др., а также для анализа почвы, пыли, донных отложений и др. [c.298]

    При /И2>6,84 расчет у л по уравнению (1.48) становится невозможным из-за отсутствия данных для (от1)о и ( 1)0 при активности воды, меньшей ее значения в насыщенных растворах нитрата уранила. Таким образом, ограничения области применения уравнения Микулина связаны не только с точностью выполнения для конкретных систем уравнения (1.47). Расчет у .г часто становится невозможным из-за отсутствия сведений о значениях в пересыщенных бинарных растворах. [c.22]

    Химическая технология редких металлов в настоящее время является одним из больших и важных разделов химической науки, бурно развивающейся областью научных и инженерных знаний. Редкие металлы, а к ним относится более 50 элементов периодической системы Д. И. Менделеева, благодаря своим уникальным свойствам находят самое широкое применение в разнообразных отраслях современной, в том числе и новой, техники. В частности, такие редкие металлы, как уран, торий, цирконий, бериллий, литий и др., оказались совершенно незаменимыми в атомной технике. [c.3]


    Специфические свойства урана определили совершенно иные области его применения. Как известно, уран является основный сырьем для получения внутриатомной энергии. [c.387]

    Рассмотрены применения технологической плазмы и высокочастотных электромагнитных полей в ядерном топливном цикле (ЯТЦ) и в смежных областях технологии и техники в комбинации с процессами сорбционного, экстракционного и ректификационного аффинажа. Проанализирован уровень развития плазменной техники для новых приложений на различных стадиях ЯТЦ источников электропитания, плазмотронов, вспомогательной техники. Предложены новые комбинированные генераторы потоков технологической плазмы, в частности уран-фторной плазмы. Большое внимание уделено анализу технико-экономической эффективности плазменной технологии, проанализировано влияние электротехнологии на биосферу, рассмотрены гипотетические схемы ядерного топливного цикла, модернизированного на основе плазменной, высокочастотной и лазерной техники, с более высоким уровнем социальной адаптации. [c.1]

    Центральными вопросами такого учебника являются методы получения материалов, используемых в ядерной технике, но не находивших ранее широкого применения в других областях (уран, торий, цирконий, бериллий, дейтерий, уран-235), а также методы переработки облученных материалов. Изложение соответствующих технологических процессов сопровождается кратким описанием применяемой аппаратуры. При этом авторы особое внимание уделяют вопросу применения экстракции в химической технологии материалов для ядерной энергетики, а также разделению изотопов как технологическим процессам, которые приобрели промышленное значение в связи с использованием ядер ной энергии. [c.3]

    Хроматографирование в тонком слое проводят на силикагеле с толщиной слоя 0,3 мм, активированном в течение 1 ч при 110 С, с применением я-гексана в качестве восходящего растворителя. Для обнаружения пятна опрыскивают пластинки 0,03%-ным раствором соли уранила и измеряют светопоглощение в УФ-области при Я = 366 нм. Значения jRf лежат между 0,88 и 1. [c.152]

    До того, как уран стал использоваться для получения атомной энергии, считалось, что у него мало применений и он получался главным образом как рудный отход при добыче ванадия или радия. Теперь же уран добывается во многих месторождениях. Основными источниками являются область Скалистых гор (США), северо-западная и юго-восточная Канада, Южно-Африканский Союз и Республика Конго. [c.8]

    Система уран — титан. Это вторая система с непрерывным рядом твердых растворов, занимающим всю у-область диаграммы (рис. 10. 51). Однако у-фаза стабилизируется недостаточно устойчиво, что ограничивает перспективы применения таких сплавов. Тем не менее, определенный интерес представляет [c.367]

    В послевоенные годы Илья Ильич принял горячее участие в исследовании таких элементов, как уран, торий и трансурановые элементы и в разработке методов их аффинажа. Он организовал большую группу из молодых ученых, ставших, в свою очередь, энтузиастами этой области химии. Благодаря плодотворной работе И. И. Черняева комплексные соединения ряда металлов нашли практическое применение при создании советской атомной промышленности, были сдельны новые теоретические выводы о строении, [c.44]

    Для получения электроэнергии в настоящее время используют множество различных типов ядерных реакторов, причем многие проекты находятся в стадии разработки, и в будущем эта область энергетики, несомненно, получит еще большее развитие [5,7]. Примеры некоторых важных типов реакторов первого поколения приведены в табл. 27. В Англии нашли наибольшее применение реакторы на природном уране с графитовым замедлителем и газовым (СОг) охлаждением, в то время как в Канаде используются преимущественно реакторы на природном уране и тяжелой воде. В США и СССР ряд атомных электростанций работает на обогащенном уране. Для охлаждения используют воду под давлением (реакторы PWR) или процесс кипения воды, служащей замедлителем. Пар, полученный таким образом, используют для вращения турбин (реакторы BWR). Для получения электроэнергии разработан также ряд опытных образцов реакторов других типов. К ним относятся реакторы на обогащенном уране, охлаждаемые расплавленным натрием, с графитовым замедлителем (SGR), реакторы с органическим замедлителем и теплоносителем (также на обогащенном уране) (OMR) и реакторы на быстрых нейтронах, о которых уже упоминалось в связи с проблемой воспроизводства ядерного горючего. [c.482]

    Несмотря на то что уран был открыт в 1789 г., в промышленном масштабе его стали получать лишь с 1853 г., после того как было найдено техническое применение солям урана для окраски стекол и керамики.. Однако такая узкая область потребления не могла в достаточной мере способствовать развитию урановой промышленности. Интерес к соединениям урана значительно возрос в связи с открытием Беккерелем явления радиоактивности и выделением из урановой руды супругами Кюри новых элементов — полония и радия. [c.3]


    Большие успехи в области применения регулируемой анионной полимеризации достигнуты за последние годы и в связи с открытием комплексных катализаторов Циглера—Натта . Под влиянием этих катализаторов были получены кристаллические полимеры этилек а, пропилена и других а-олефипов, обладающие регулярным строением с определенным расположением заместителей в пространстве (изотактические и синдиотактические полимеры, стр. 57 ел.). По типу полимеров, получаемых под воздействием катализаторов Циглера—Натта, последние называют с т е р е о-специфическими к а т а л и з а т о р а. м и. Стерео-специфические катализаторы состоят из смеси металлорганических соединений металлов П и 1Н гру[И1 и галогенидов металлов [ V и VI групп, включая торий и уран. Наибол ,шее распространение приобрел катализатор, получаемый смешением триалкил-алюминия и х. юридов титана при разл гчном молярном соотно-пн нии компонентов. [c.146]

    Применение. Важнейшей областью применения Т. является ядерная техника. Природный Т., состоящий практически из одного изотопа Th , превращается иод действием нейтронов в способный к делению изотон урана к-рый служит, ]1аряду с и Pu - , ядерным горючим соответствующая реакция приведена выше. Преимущество Т. перед ураном заключается в высокой темп-ре плавления и отсутствии фазовых превращений до 1400° U- отличается bjj o-ким значением коэфф. воспроизводства тепловых нейтронов, обеспечивающим высокую степень их использования в ядерпых реакторах. К недостаткам Т. относится необходимость добавления к нему делящихся веществ для осуществления ядерной реакции. [c.114]

    На основе соединений с эпоксидными группами получен ряд новых полимерных материалов, принадлежащих к группе ионитов. Ионитами я вляются твердые нерастворимые высокомолекулярные продукты, характерная особенность которых — способность к ионному обмену с внешней средой за счет активных групп высокомолекулярной основы. В зависимости от знака ионов, зафиксированных на высокомолекулярном каркасе ионита, их подразделяют на катиониты и аниониты. Область применения в технике этих материалов все более расширяется. Например, ионообменная технологий широко распространена в урановой промышленности [28]. При гидрометаллургической переработке урановых руд и производстве чистых соединений урана используют процессы избирательного извлечения урана из кислых и карбонатных растворов, а также рудных пульп. Дальнейшее развитие сорбционной технологии связано с применением новых типов ионообменных смол, обладающих превосходными кинетическими характеристиками и большой селективной способностью. Необходимость этих свойств в ионитах обусловлена тем, что при химическом выщелачивании урана в растворы переходит значительное количество содержащихся в рудах примесей других элементов железа, алюминия, магния, натрия, марганца, меди, молибдена, вольфрама и др. Важной задачей поэтому является разработка таких ионитов и способов их использования, которые позволяли бы селективно извлекать уран из сложных по солевому составу технологических растворов и пульп. [c.167]

    Физико-химпчрские процессы растворения минералов. При химич. взаимодействии металла с растворителем нейтральный атом металла переходит в ионное состояние, образуя растворимое соединение. Растворение происходит легко в случае выще.пачпвания руд или концентратов, в к-рых металл присутствуЕт в окисленной (ионной) форме. Данный тип руд и их продуктов представляет наибольшую область применения Г., нанр, медные и урановые руды, обожженные цинковые концентраты, продукты хлорирующею обжига. В нек-рых случаях для извлечения металла растворителем необходимо окисление кислородом или другим окислителем (напр., нри содовом выщелачивании руд, содержащих 4-валентный уран, для нз-ревода последнего в 6-валентный). При растворении металлов (самородных или восстановленных) неизбежно окисление для перехода металла в ионное состояние. Окисление металла с одновременной ионизацией окислителя (напр., растворенного в воде молекулярного кислорода) в случае более благородных металлов термодинамически возможно лишь при затрате энергии, к-рая, напр., может быть получена при образовании комплексного иона (цианирование золота и серебра, аммиачное выщелачивание металлич. меди, никеля). [c.466]

    Получите окись тетраметилена (тетрагидрос[)уран) и укажите область ее применения. [c.72]

    Наибольший интерес в практическом плане представляет глицинтимоловый синий (2.3 39) [517—521]. Этот комплексон образует комплексы преимущественно с катионами переходных и двухвалентных элементов побочных групп Периодической системы элементов Д. И. Менделеева и практически не взаимодействует с катионами, имеющими электронную конфигурацию типа инертного газа. Наиболее прочные комплексы образуются с палладием и медью. Однако устойчивость комплекса с палладием превышает оптимальное значение для успешного применения реагента в качестве металлиндикатора, и титрование с применением ЭДТА в связи с этим затруднено. В случае меди подобного блокирования не наблюдается, и применение индикатора (2.3.39) дает возможность избирательно определять этот катион [522, 523]. С уранил-ионом образуются комплексы иОгНзЬг в области рН = 4—4,4 (/(=0,8-10 ), комплексы с соотношением [и02+] [НзЬ2 ]= 1 2 при рН = 4,5—5,0. Комплексон [c.267]

    Световой луч проходит значительные расстояния в воздухе без заметных потерь, легко фокусируется с помощью обычной оптической аппаратуры, обладает глубокой проникающей способностью для прозрачных и даже непрозрачных материалов (в инфракрасной области). Это дает возможность проводить сварку деталей в вакууме с использованием вынесенного источника лучистой энергии. В таком варианте вакуумная камера выполняется с окошком из кварцевого стекла, позволяющего пропустить тепловые лучи (световые лучи в инфракрасной области) и производить визуальное наблюдение за протекающим процессом. Сварка может осуществляться и на воздухе без применения вакуумной камеры. И в том и в другом случаях в качестве источника лучистой энергии применяются установки типа УРАН (название составлено из первых букв слов — установка радиационного нагрева ). Такая установка состоит из блока питания, поджигающего устройства и излучателя, снабженного мощной лампой дугового разряда. Излучатель обычно выполняется в виде сферического или параболического зеркала, поверхность которого имеет высокий коэффициент отражения в результате специальной обработки (шлифование, напыление алюминиевой пленки и т. д.). В фокусе зеркала помещается ксеноновая лампа типа ДКСР мощностью 3—10 кВт. Регулируя положение лампы (в реальных конструкциях передвигается зеркало) относительно зеркала, добиваются наилучшей фокусировки луча в виде светового пятна малых размеров. Теоретически температура в пятне может быть получена равной температуре плазмы. На практике уже получены температуры в пятне, близкие к 3000°С. [c.155]

    Воз мож-но1сть экстракции продукто В деления и плутония из расплавленного ураиового горючего видна из табл. 10.11, в которой приведены коэффициенты распределения для двух перспективных экстрагентов расплавленного серебра и расплавленного магния. Теплота зкстракции плутония магнием составляет около —8,6 ккал/г-атом. Применение в качестве экстрагента омагния осложняется тем, что он кипит около 1120° С и поэтому может существовать в виде жидкости в области температур, при которых уран находится в жидком состоянии (точка плавлепия и равна 1130° С), лишь при давлениях выш е одной атмосферы. Но сравнительно высокая летучесть. магния упрошает его отделение от [c.264]

    Одновременно с достижениями в области промышленного применения редких элементов успешно развиваются и новые методы их анализа. Вероятно, наиболее важными из них являются хроматографические методы определения урана, тория, земельных кислот, полярография для урана, европия, иттербия, экстракция органическими растворителями д.ля скандия и урана и спектрофотометрия д. я редкоземельных элементов и платиновых металлов. Все эти методы включены в настоящее издание наряду с больишм числом усовершенствований в части классических методов анализа. Главы, посвященные редкоземельным металлам, торию, германию, ниобию и танталу, значительно переработаны главы, посвященные скандию, урану, рению и платиновым металлам, почти полностью написаны заново и содержат много совершенно новых аналитических методов [c.6]

    Редкими металлами в совр. технике условно называют нек-рые химич. элементы, в большинстве по своим свойствам металлы, области возможного исполт.-зования, природные ресурсы и технология произ-ва к-рых уже достаточно определены, но к-рые еще редко и в относительно малых количествах применяются в пром-сти, поскольку при достигнутом ранее уровне техники еще можно было обойтись без их широкого использования. Развитие применения и произ-ва РМ обусловлено возникновением потребности пром-сти в новых высокоэффективных материалах. К РМ относится ок. 30 химич. элементов литий, цезий, бериллий, стронций, иттрий, редкоземельные элементы, цирконий, гафний, ниобий, тантал, а также т. н. редкие рассеянные химич. элементы галлий, индий, таллий, германий, селен, теллур, рений. Группа РМ не остается неизменной из РМ выбывают химич. элементы, получившие широкое применение в пром-сти, каковы вольфрам, молибден, уран или титан, еще недавно относившиеся к РМ. Из группы современных РМ также могут в ближайшее время перейти в разряд обычных материалов техники цирконий, стронций, литий, церий, ниобий как наиболее подготовленные к широкому пром. использованию. Вместе с тем группа РМ пополняется не изученными ранее химич. элементами после установления их полезности для произ-ва и возможности использования при дальнейшем повышении уровня техники. К ним относятся, напр. рубидий, скандий, гольмий, тербий, эрбий, иттербий, диспрозий, лютеций, изученные пока еще недостаточно, но условно уже включаемые в состав РМ. Группа РМ пополргатся и такими хпмич. элементами, как технеций, прометий, трансурановые актиноиды, к-рые будут воспроизводиться искусственно и выделяться при регенерации отработанного ядерного топлива в установках для мирного использования атомной энергии в относительно значительных количествах, позволяющих организовать их регулярное применение в пром-сти. [c.417]

    Области практического применения подразделяются на анализ малых количеств суммы р.з.э., выделенной из материалов руд или основных пород, и на анализ суммы р.з.э., выделенных из чистых металлов, в основном из ядерного горючего (уран, плутоний, торий) и коиструкциопных материалов атомного реакторостроения. [c.133]

    Ве многих случаях используют не гомогенные смеси делящихся материалов с замедлителем, а неоднородные среды из дискретных блоков замедлителя и ядерного топлива. Б реакторах, работающих на естественном уране, металлические стержни, образующие правильную решетку, размещаются в замедлителе — графите или тяжелой воде. Необходимость использования конструкций такого рода диктуется следующими соображениями. Значительная часть потерь нейтронов обусловлена существованием у нескольких максимумов поглощения в области между 6 и 200 эв. В гомогенной смеси урана и замедлителя весьма велика вероятность того, что нейтрон в процессе замедления будет поглощен 11 за счет реакции пу) в резонансной области. При использовании урановых блоков энергия большей части нейтронов понизится в замедлителе до значений нише резонансной, до того как произойдет столкновение с ядром урана. Оптимальная величина шага решетки равна примерно значению Ьз для замедлителя. Без применения такого рода блочных систем значение Л , для реакторов на обычном уране с графитовым замедлителем было бы несколько меньше единицы. Даже при использовании гетерогенных устройств значение в этом случае не может превышать т), равное 1,3. Для уран-гра-фитовых реакторов (с обычным ураном) као составляет около 1,07, и в соответствии с уравнением (3) критический радиус такого реактора должен равняться примерно p = зх-18,7-(0,07)- 2 = 220 см. Если реактор имеет кубическую форму, длина ребра составит приблизительно ]/Зi кp или около 4 л. [c.470]


Смотреть страницы где упоминается термин Области применения урана: [c.195]    [c.628]    [c.315]    [c.466]    [c.829]    [c.494]    [c.49]    [c.180]    [c.20]    [c.169]    [c.6]    [c.154]    [c.168]   
Смотреть главы в:

Технология урана -> Области применения урана




ПОИСК





Смотрите так же термины и статьи:

Область применения



© 2025 chem21.info Реклама на сайте