Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Специфические влияния катализаторов на превращения

    В ранних работах, посвященных исследованию свойств цеолитов, специфичность их каталитического действия в синтезе и превращениях углеводородов объяснялась молекулярно-ситовыми и стерическими эффектами, обусловленными особенностями структурного строения цеолитов. Однако, хотя размеры и конфигурация каналов в цеолитном каркасе имеют важное значение для диффузионных процессов и протекания высокоселективного катализа па цеолитах, большую роль при этом играют и их кислотно-основные свойства. Экспериментально установлено, что на поверхности цеолитных катализаторов имеется целый набор кислотных центров, причем в реакциях участвуют не все центры, а лишь их небольшая часть, специфическая для каждого типа реакций. Сила и концентрация кислотно-основных центров, находящихся в цеолите, оказывают сильное влияние на качественный и количественный состав продуктов реакции [1—4]. В связи с этим исследование кислотных свойств цеолитных катализаторов [c.43]


    Брожение моносахаридов. Большое место в превращениях, углеводов в природе принадлежит их брожению. Брожением называется процесс распада органических веществ под влиянием микроорганизмов. Этот распад происходит в результате действия ферментов (энзим), выделяемых микроорганизмами в процессе своей жизнедеятельности. Ферменты, являясь специфическими биологическими катализаторами, способны активизировать определенные химические реакции. Поэтому различные микроорганизмы выделяют ферменты, разлагающие те или иные вещества до различных конечных продуктов. По этим продуктам обычно и различают виды брожения. [c.336]

    Для правильного выбора катализатора и проведения каталитического процесса необходимо знать основные характеристики катализатора и влияние на них различных факторов. К основным характеристикам катализатора относятся следующие 1) химическое или физическое сродство к реагентам (например, катализаторы гидратирующего и дегидратирующего типа способны образовывать соединения гидратного типа, а гидрирующие или дегидрирующие — промежуточные соединения сорбционного типа) 2) специфичность, выражающаяся в том, что для каждой группы химических превращений существует определенный (специфический) тип катализатора (например, катализаторы изомеризации, поликонденсации, полимеризации и т. д.) 3) избирательность, или селективность, т. е. способность ускорять одну определенную реакцию (или несколько) из всех возможных химических превращений в данной системе 4) активность, которая оценивается по количеству продукта, получаемого с единицы массы (или объема) катализатора за единицу времени. [c.464]

    Механизмы метаболических процессов очень напоминают механизмы реакций, проводимых в лабораторных условиях, с тем отличием, что если в лаборатории часто работают прн повышенных температурах и давлении, с безводными (часто ядовитыми) растворителями, с сильными кислотами и основаниями и с нетипичными для природы реагентами, то метаболические процессы протекают при весьма умеренных условиях в разбавленных водных растворах в интервале температур от 20 до 40 °С при pH от 6 до 8 и с участием чрезвычайно эффективных катализаторов — ферментов. Можно сказать, что каждая ступень метаболического процесса катализируется специфическим ферментом. Ферменты представляют собой вещества белковой природы их каталитическое действие оказывает влияние не на положение равновесия реакции, а на ее скорость, которая очень сильно увеличивается — часто на несколько порядков по сравнению со скоростью реакции, проводимой в лабораторных условиях. В состав некоторых ферментов входят коферменты, имеющие небелковый характер. Подвергающийся превращению субстрат сначала связывается с активным центром фермента, поблизости от которого расположен кофер-мент. При этом реагирующая группа субстрата и кофермент так сориентированы в пространстве, что реакция между ними протекает практически мгновенно. Затем прореагировавший субстрат отделяется от активного центра фермента, а измененный кофермент регенерируется под действием другого субстрата. Если в ферменте нет кофермента, то два субстрата непосредственно взаимодействуют в активном центре. [c.180]


    Объектом исследования химической кинетики является химический процесс превращения реагентов в продукты. Можно возразить, что химическая реакция является предметом исследования и ряда других химических дисциплин, таких как синтетическая и аналитическая химия, химическая термодинамика и технология. Следует отметить, что каждая из этих дисциплин изучает химическую реакцию в своем определенном ракурсе. В синтетической химии реакция рассматривается как способ получения разнообразных химических соединений. Аналитическая химия использует реакции для идентификации химических соединений. Химическая термодинамика изучает химическое равновесие как источник работы и тепла и т. д. Свой специфический подход к химической реакции имеет и кинетика. Она изучает химическое превращение как процесс, протекающий во времени по определенному механизму с характерными для него закономерностями. Это определение нуждается в расшифровке. Что именно в химическом процессе изучает кинетика Во-первых, реакцию как процесс, протекающий во времени, ее скорость, изменение скорости по мере развития процесса, взаимосвязь скорости реакции с концентрациями реагентов - все это характеризуется кинетическими параметрами. Во-вторых, влияние на скорость и другие кинетические параметры реакции условий ее проведения, таких как температура, фазовое состояние реагентов, давление, среда (растворитель), присутствие нейтральных ионов и т. д. Конечный результат таких исследований - количественные эмпирические соотношения между кинетическими характеристиками и условиями проведения реакции. В-третьих, в кинетике изучают способы управления химическим процессом с помощью катализаторов, инициаторов, промоторов, ингибиторов. В-четвертых, кинетика стремится раскрыть механизм хи- [c.15]

    Вероятность различных реакций в реакционной системе зависит от рабочих условий и, в частности, от природы катализатора и характера среды. Соотношение продуктов послужит указанием о влиянии, которое они оказывают на процесс. Так, в случае катализаторов, участвующих в промежуточном комплексе с определенной специфической функцией, можно ожидать, что процентное содержание продуктов будет изменяться при переходе от одного катализатора к другому если катализаторы входят в промежуточный комплекс в какой-либо общей форме, например протона, то все они обеспечат одинаковое распределение продуктов. Изменение селективности контрольного превращения даст сведения и о характере действия растворителей. [c.221]

    Высказывается мнение [2], что микробиология загрязнения якобы во всех случаях пмеет защитный характер и направлена на удаление патогенных микроорганизмов. Не отрицая этого, следует иметь в виду и ведущую роль микроорганизмов в процессах самоочищения. Необходимы представления о характере микробных влияний на сложные вещества сточных вод для того, чтобы использовать, как это уже делается в промышленной микробиологии, активность микроорганизмов в качестве дешевого катализатора различных специфических превращений. [c.240]

    На бифункциональных цеолитных катализаторах может происходить идеальный гидрокрекинг н-парафинов, что позволяет достигать высокой гибкости по выходу различных целевых веществ. В цеолитах с узкими порами может происходить селективное превращение углеводородных молекул определенных размеров. Бифункциональные свойства цеолитов были изучены в случае катализаторов с хорошо сбалансированными кислотной и гидрирующе-дегидрирующей функциями. Однако роль структуры и специфических свойств цеолитов исследована далеко не достаточно практически нет и работ, в которых бы изучали влияние размеров, геометрии и электронных свойств частиц металла на характер превращения углеводородов. [c.137]

    Белки, жиры, углеводы, содержащиеся в кормах и продуктах, при обычных условиях практически не изменяются и могут длительное время сохраняться. Но как только эти вещества попадают в организм животного, они под влиянием пищеварительных соков быстро гидролизуются на более простые соединения, которые всасываются и в конечном счете распадаются до СОг и НгО. Химические превращения веществ в организме протекают довольно легко и с большой скоростью при невысокой постоянной температуре и в среде, близкой к нейтральной. Это дало основание полагать, что в организме содержатся вещества, действующие подобно катализаторам. И постепенно в науке утвердилось положение, что все химические реакции в организме являются каталитическими. Роль катализаторов выполняют возникшие в процессе эволюции специфические белки, получившие название ферментов (энзимов). [c.5]

    Подбор катализаторов для синтеза и превращений органических соединений серы затруднен. Это связано со специфическими свойствами последних, обусловливающих особый характер превращений и, главное, часто нежелательное влияние на активность катализаторов. Но рассмотрение свойств органических соединений серы и традиционных катализаторов позволяет сформулировать некоторые принципы подбора катализаторов для реакций с участием сернистых веществ. Кратко основные положения развиваемого подхода можно сформулировать следующим образом. [c.4]


    Вопрос о том, как объяснить типичные и, по-видимому, специфические влияния минерализаторов или катализаторов на превращения, разрешается с точки зрения современной кристаллохимии как результат взаимодействий потенциалов их электростатических полей со структурой ионных кристаллов. Следовательно, эта проблема тесно связана с весьма заметным влиянием потенциальных полей на вязкость и окраску силикатов и родственных им стекол (см. А. И, 327 и ниже). В этой области работали Эйтель и Уэйл в продолжение этих исследований последний разработал многообещающую теорию о превосходстве лития как катализатора превращений, что наблюдали также ван Ньнвенбург и де Нойер (см. В. I, 64). Силы полей имеют существенное значение, и их действия определяются не только диаметром иона, но также электростатическими зарядами и поляризационными факторами. Сильный каталитический эффект ионов кальция объясняется повышением заряда при замене ими катиона кремния в структуре. Таким же образом действуют слабые анионы, вроде р- и 0Н , которые в геохимии играют преимущественно роль флюсов и минерализ-аторов, замещая анионы кислорода (см. А. I, П6). С другой стороны, высоко заряженные катионы вольфрама, молибдена и даже трехвалентного [c.393]

    Практическое применение пиридина довольно разнообразно он служит растворителем, инсектицидом, исходным сырьем для синтеза различных детергентов, а также для синтеза антисептиков и некоторых других фармацевтических препаратов, например сульфидина, наконец, пиридин используется в производстве специальных красителей. В лабораторной практике его применяют в качестве специфического растворителя для многих органических веществ, трудно растворимых в других средах. Помимо того что пиридин растворяет большое число органических соединений, следует отметить, что безводный пиридин является хорошим растворителем для многих неорганических солей, в частности, бромида серебра, нитрата, серебра, хлоридов закисной и окисной меди, хлорида окисного железа, сулемы, нитрата свинца, ацетата свинца [5]. Такие растворы часто обладают значительной электропроводностью, и это обстоятельство особенно ценно для изучения электролитических свойств не растворимых в других средах соединений или гидролизуемых водой солей. Пиридин оказывает сильное каталитическое влияние на некоторые реакции. Превращение тростникового сахара в октаацетат при обработке его уксусным ангидридом ускоряется в присутствии пиридина [6]. Имеются указания о том, что ацетат пиридина катализирует реакции диенового синтеза [7]. Пиридин применяют при получении меркаптанов [8], атакже в качестве отрицательного катализатора при этерификации уксусной кислотой [9]. Ранее уже указывалось на применение пиридина в качестве связывающего кислоту вещества (стр. 318). [c.373]

    При окислительном дегидрировании изоамиленов может использоваться как кислород, так и воздух. В зависимости от этого существенно меняется схема переработки контактного газа. Однако в любом случае при подаче с углеводородами только кислорода или только кислорода и азота условия дегидрирования оказываются слишком жесткими. Обычно вместе с сырьем подается водяной пар. Последний, по-видимому, как и в ряде других процессов, является не только разбавителем, но и оказывает некоторое специфическое влияние на окислительное дегидрирование олефинов [283]. Одновременно подача воды повышает безопасность проведения процесса и решает проблему отвода тепла реакции. Однако использование водяного пара приводит к повышению энергозатрат и поэтому степень разбавления сырья водой должна быть минимальной. К сожалению, применение известных в настоящее время катализаторов окислительного дегидрирования изоамиленов связано с необходимостью большого разбавления сырья водяным паром (см. табл. 28), что является одним из самых серьезных недостатков рассматриваемого метода. Селективность процесса существенно снижается с уменьшением степени разбавления. Так, при окислительном дегидрировании изоамиленов на фосфор-висмут-молибденовом катализаторе при 450 °С выход изопрена в расчете на превращенный олефин возрастает от 55 до 80% с увеличением мольного отношения Н2О изо-СаНщ от 1 до 20. [c.166]

    Практически не дает преимуществ. Повышение давления газообразного ацетилена выше одной атмосферы при температурах, требуемых для реакции конденсации, может привести к опасным взрывам. Однако имеется патент,по которому ацетилен, если он растворен в инертном масле, может быть превращен с большим выходом в жидкие углеводороды под давлением от IО до 200 атмосфер в присутствии таких катализаторов, как мелкораздробленное железо или бромистый магний. Роль катализатора при процессе конденсации ацетилена несколько трудно определима. Часто продолжительность его действия очень мала вследствие обволакивания углеродом, практически всегда осаждающимся при термической конденсации ацетилена при температурах от 650° и выше, в отсутствии таких активных разбавителей, как водород или водяной газ. Этотуглерод влияет на ход реакции и в некоторых случаях накапливается в таких количествах, что закупоривает реакционную трубку. Зелинский [31] утверждает, что наполнение трубки активированным углем снижает опасность вспышки и отложения углерода, а также повышает при температуре 600—650° содержание бензола в конечном продукте. Ики и Огура [32] нашли, что разница в каталитическом действии активированного угля, кокса и каолина при температурах 600°и выше невелика. Ковач и Трико [22] не смогли обнаружить специфического влияния активированного угля и нашли, что окись алюминия, кварц, фарфор, пемза и куски кирпича одинаково эффективны при оптимальной температуре 650 , после того как покроются углеродом в результате разложения ацетилена. Фишер, Бангерт и Пихлер [24 полагают, что выделившийся углерод действует как катализатор на полимеризацию ацетилена при 600—650. Этот же факт отмечает и Фужио [27]. Берль и Гофман [26] считают, что более пористые формы углерода способствуют разложению ацетилена, а более плотные—превращению его в жидкие продукты. Металлы, являющиеся промоторами реакций гидрирования и дегидрирования, [c.225]

    Процесс гидрообессеривания остаточного сырья характеризуется рядом специфических особенностей. Это большие диффузионные затруднения дпя протекания основных реакций, обусловленные наличием значительной жидкой фазы в зоне реакции и большими размерами молекул сырья. Другой важный фактор - быстрая дезактивация катализатора, обусловленная высоким содержанием коксообразующих и металлсодержащих соединений. Все это резко снижает м >фективность реакции удаления серы. В качестве примера могут быть приведены результаты изучения влияния металлсодержащих порфиринов и асфальтенов на степень гидрогенолиза тиофена. В качестве модельного соединения использован протопорфирин IX диметилэф1фа и асфальтены, выделенные из нефти. Добавление соответственно 6 и 4% этих веществ в гаофен снижает степень его превращения с 72% до нуля (рис. 3.8) [100]. В этой работе показано, что для асфальтенов более характерно отложение на внешней поверхности гранулы катализатора вввду больших размеров их частиц и ассоциатов (до 4—5 нь и, соответственно, создание условий для больших диффузионных затруднений в процессе. Порфирииы, хотя и в большей степени проникают в поры катализатора, также отрицательно влияют на реакции удаления серы из тиофена. [c.113]

    Для других парафиновых углеводородов природа катализатора также сильно влияет на ход образования продуктов уплотнения и других веществ, причем это влияние здесь более разнообразно, чем при превращении метана, так как оно сводится не только к изменению условий частичного распада продуктов уплотнения (дегидрогенизация, деметанирование, отщепление различных других групп и фрагментов), но и к изменению условий образования промежуточных мономеров поликонденсации. Например, при введении металлических катализаторов, активных для дегидрогенизации, или введении специфических катализаторов крекинга облегчается образование промежуточных олефинов. Следовательно, будет облегчаться и получение продуктов уплотнения по низкотемпературному механизму. Введение специфических катализаторов ароматизации будет способствовать образованию продуктов уплотнения по высокотемпературному механизму. Кроме того, при поликонденсации олефинов и ароматических углеводородов природа катализатора может влиять и на структуру самого процесса поликонденсации, изменяя его элементарные стадии, а это может повлиять на состав и строение получающихся продуктов уплотнения. [c.183]


Смотреть страницы где упоминается термин Специфические влияния катализаторов на превращения: [c.10]    [c.13]    [c.111]    [c.48]    [c.359]    [c.305]    [c.211]    [c.13]    [c.211]   
Физическая химия силикатов (1962) -- [ c.85 ]




ПОИСК





Смотрите так же термины и статьи:

специфическая

специфическая специфическая



© 2024 chem21.info Реклама на сайте