Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминиевые покрытия напыление

    Покрытия, получепные распылением и осаждением в вакууме, могут быть нанесены на большинство металлов и на многие неметаллы. Например,осаждение в вакууме осуществляют на многие материалы, включая пластики, напыление применяют для покрытий тканей, пластических материалов и бумаги. Погружение в горячий расплав и другие диффузионные процессы зависят от природы основного металла и от свойств покрытия. В большинстве случаев алюминиевые покрытия используются на железе и стали и в меньщих масштабах на алюминиевых сплавах и пластиках. [c.401]


    Металлические покрытия наносят газопламенным напылением, т. е. металлизацией или распылением расплавленного металла с помощью пистолета-металлизатора. Металлизатор позволяет расплавлять наносимый материал факелом, образованным при сгорании газов, или электрической дугой, и распылять расплав струей сжатого воздуха. Защитные слои металла состоят из одного или нескольких слоев, в том числе из слоев разных металлов, и обозначаются химическим символом металла и цифрой, характеризующей минимальную толщину покрытия в микрометрах, например А1 100 или 1п 60 и т. д. Для получения алюминиевых покрытий наиболее пригоден алюминий 99,5%-ной чистоты, а для цинковых покрытий — цинк 99,9%-ной чистоты. [c.81]

    Вид покрытия выбирают в зависимости от требований к функциям изделия и среды, в которой оно будет работать. Толщина покрытия зависит от агрессивности коррозионной среды и требуемого срока службы защищаемого изделия. Газопламенное напыление цинковых или алюминиевых покрытий применяют преимущественно для защиты стальных конструкций в атмосферах типа 4 и 5, т. е. в атмосферах с высоким и очень высоким уровнем агрессивности, и во всех видах вод. В табл. 7 приведена скорость коррозии алюминия и цинка в различных атмосферах и водах. [c.81]

    Метод напыления применяется в промышленности для защиты крупногабаритных конструкций в собранном виде, например, газгольдеров, резервуаров и т.д. В химическом машиностроении он не нашел широкого применения вследствие недостатков, указанных выше. Известно только применение алюминиевых покрытий, полученных подобным способом, для защиты от коррозии оборудования заводов, перерабатывающих сернистые нефти, вулканизационных котлов и подобных аппаратов. [c.281]

    Алюминиевые покрытия термического напыления используемые в морских конструкциях 44 347 [c.39]

    Для металлизации используют алюминий, цинк, медь и нихром в виде порошка или проволоки (табл. 3.28). Адгезионная прочность алюминиевых покрытий, полученных электродуговым напылением, выше, чем полученных газопламенным. Выбор металла для металлизационного покрытия определяется условиями эксплуатации оборудования, в первую очередь — агрессивностью среды. Цинк нельзя использовать при длительном воздействии горячей (от 55 до 100 °С) воды. Алюминиевые покрытия уступают цинковым при наличии паров азотной кислоты, а цинковые покрытия не стойки при воздействии паров соляной кислоты, оксидов серы и хлора. [c.232]


    Металлизация распылением требует относительно больших затрат на оборудование. Аппараты электродугового типа значительно дороже, чем газопламенные, но зато эксплуатационные расходы на электрометаллизацию примерно вдвое меньше. Согласно расчету сравнительной стоимости напыления металлов разными способами [9], расходы на получение 1 алюминиевого покрытия толщиной 0,3 мм при газовой металлизации составляют 50—60 крон, а при электродуговой 25—30 крон. Ниже указаны затраты на напыление алюминиевого покрытия толщиной 0,3 мм проволочным металлизационным аппаратом марки AD-1 (в кронах)  [c.137]

    Такая система покрытий обеспечивает защиту стальной основы от водородного охрупчивания и коррозии и изнашивания гидро- или газоабразивным потоком. Двухслойное покрытие с наружным слоем, состоящим в основном из окиси алюминия, можно получать последовательным плазменным напылением с плавным переходом от А1 к А12 О3 или окислением части нанесенного алюминиевого покрытия. При этом окисление можно проводить твердым анодированием, анодным оксидированием, ионной имплантацией, окислением в тлеющем разряде и другими методами. [c.111]

    Напыление цинковых или алюминиевых покрытий на стальные болтовые соединения представляет особое значение. При напылении цинковых покрытий легко получить коэффициент [c.81]

    Получение алюминиевых покрытий. Алкилалюминийгалогениды используются для напыления на поверхности металлического алюминия таким же способом, как и алюминийалкилы а также для гальванического покрытия алюминием [c.84]

Рис. 7.3. Алюминиевое покрытие, нанесенное методом напыления. Вид покрытия свер.ху после травления. Х75 Рис. 7.3. <a href="/info/623807">Алюминиевое покрытие</a>, <a href="/info/996597">нанесенное методом напыления</a>. Вид покрытия свер.ху после травления. Х75
    Покрытия, полученные металлизацией, в большинстве случаев защищают от ржавления органическими лаками и красками 1 Обычно толщина напыленного алюминиевого слоя составляет 0,08— 0,2 мм. В серии испытаний, проведенных в промышленной атмосфере, напыленное алюминиевое покрытие толщиной 0,08 мм прослужило в среднем 12 лет, в то время как цинковое, независимо от того, было оно получено напылением, электроосаждением или погружением в расплав, — всего 7 лет [22]. [c.242]

    В природной жесткой воде осаждаемый в поры нерастворимый карбонат кальция в результате увеличения pH на поверхности стали и растворимый бикарбонат кальция оказывают такое же воздействие, как осаждаемые цинковые соли. При напылении алюминиевого покрытия на сталь на поверхности образуются круглые частицы с многочисленными разбросанными маленькими порами. Так как эти частицы покрыты пленкой окиси алюминия, то гальваническое действие алюминия не проявляется явно до тех пор, пока не нарушена пленка. Считается, что вначале анодные участки на алюминии развиваются в порах, достигающих поверхности стали, но гальваническое взаимодействие между сталью и алюминием не может продолжаться долгое время, так как поры вскоре заполняются А1(0Н)з и ржавчиной. [c.45]

    Лакокрасочные покрытия на цинковых и алюминиевых покрытиях, полученных газопламенным напылением, — ТТП 9 [c.126]

    На глубине экспонировали образцы сталей, покрытые цинком, алюминием. напыленным алюминием, титаном-кадмием, кадмием, медью и никелем. Цинковое покрытие (0.304 г/м ) на глубине 750 м защищало сталь в течение 3—4 месяцев пребывания в морской море н в течение примерно 7 месяцев прп частичном погружении в донные осадки. Алюминиевое покрытие (0.304 г/м ) защищало сталь (при той же глубине экспозиции) в течение по крайней мере 13 месяцев в морской воде и в условиях частичного погружения в донные осадки. [c.246]

    Метод электродуговой металлизации (ЭМ) также прост по аппаратурному оформлению, допускает механизацию и автоматизацию процесса, характеризуется высокой скоростью теплопередачи (в 7—10 раз выше скорости теплопередачи при ГПН), чем обеспечиваются более высокие температура и де-формативная способность распыляемых частиц при ударе о подложку, оптимизирующие условия формирования покрытия. Так, прочность сцепления с основой алюминиевого покрытия, нанесенного этим методом, составляет 10 МПа, а методом ГПН — 5 МПа [42, с. 218—225]. Кроме того, коррозионная стойкость этих покрытий выше ( 9). На адгезию цинковых покрытий способ напыления практически не влияет. При толщине покрытия 200—300 мкм она в обоих случаях составляет [c.223]

    Напыление цинковых или алюминиевых покрытий на стальные болтовые соединения представляет особое значение. При напылении цинковых покрытий легко получить коэффициент скольжения 0,45-0,55, а при напылении алюминиевых покрытий он увеличивается до 0,7. [c.46]


    Мульчирование почвы — одна из крупнейших областей использования пластмассовых пленок в сельском хозяйстве, так как при невысоких затратах оно значительно повышает урожайность многих культур (в среднем на 20—100%) и сокращает сроки созревания. Для мульчирования используют прозрачные, черные, серые и коричневые, а также отражающие пленки с напыленным алюминиевым покрытием. [c.294]

    От способа нанесения алюминиевых покрытий зависит стойкость изделий против образования окалины [29] — это показано на рис. 12.8. Кроме того, при выборе способа алитирования следует учитывать разницу в отношении температуры, при которой ведется процесс, и затрат времени и металла (табл. 12.11). Здесь необходимо заметить, что слои цинка и алюминия, полученные напылением, сами по себе еще не дают достаточной защиты и должны быть соответствующим образом дополнительно уплотнены. Для этого их пропитывают жидким стеклом или раствором буры [c.601]

    Заслуживает интерес применение напыленного алюминиевого покрытия для повышения стойкости стали к высокотемпературному окислению при температурах до 900° С. Деталь подвергают обдуву металлической крошкой, после чего напыляют слой алюминия толщиной около 0,2 мм. Затем наносят слой битума или жидкого стекла и подвергают деталь диффузионному отжигу в печи при 850° С в течение 30 мин. Окончательное покрытие состоит пз последовательности сплавов алюминий — железо и наружной пленки алюминиевого окисла (рис. 6.29). Такое покрытие будет сопротивляться окислению в течение очень длительного времени при температурах до 900 С. При более высоких температурах диффузия железа в алюминий становится настолько быстрой, что слой сплава обогащается железом, и верхний слой содержит уже недостаточное количество алюминия для того, чтобы обеспечивать дальнейшую защиту. Усовершенствование этого процесса заключается в использовании алюминия, содержащего 0,75% d. Для этого сплава отпадает необходимость в операции покрытия деталей слоем битума или жидкого стекла. Деталь после нанесения на нее покрытия сразу же помещают в печь. Использование этого метода позволяет получать более толстый диффузионный слой. Этот процесс может быть использован и для некоторых марок чугуна. Но если в последнем слишком высоко содержание свободного графита, то алюминиевый слой не будет защищать от высокотемпературного окисления. [c.383]

    Следует подчеркнуть, что качество алюминиевых (как, впрочем, и других) покрытий резко зависит от способа их образования. Покрытие, нанесенное распылением, вследствие своей пористости оказывается гораздо менее эффективным, чем полученное погружением изделия в расплав. Лишь после термообработки защищенных изделий в вакууме или в нейтральной атмосфере защитное действие напыленных покрытий значительно улучшается благодаря возникновению промежуточного диффузионного слоя. Высокими качествами обладает алюминиевое покрытие, сконденсированное из паровой фазы на горячую поверхность. [c.96]

    Основным методом получения алюминиевых покрытий в данное время является горячий метод. К менее распространенным способам относятся диффузионный, металлизация, вакуумное напыление, плакирование и другие. Эти методы не экономичны в смысле расхода алюминия и часто не обеспечивают нужного качества покрытия (пластичность, беспористость, равномерность). Так называемые горячие — наиболее распространенные методы получения алюминиевых покрытий [1—4] мало пригодны для защиты стального проката, подвергающегося в дальнейшем деформациям. Это объясняется хрупкостью покрытия, обусловленной появлением значительной прослойки интерметаллидов железо-алюминий. Кроме того, нагревание до 700—750° С необходимое для нанесения расплавленного алюминия может привести к нежелательному изменению некоторых физических свойств защищаемого металла. [c.311]

    Поры играют важную роль в защитных свойствах напыленного алюминия. Его поведение совершенно отличается от поведения массивного металла. Распыление алюминия на практике используют для защиты от коррозии деформируемого алюминия. Пористость алюминиевых покрытий несколько выше, чем цинковых, причем открытая пористость может достигать 10%, хотя обычно она близка к 5%. Каждая частица [c.381]

    В промышленных условиях скорость коррозии алюминия составляет только одну треть скорости коррозии цинка и затухает во времени благодаря хорошей адгезии продуктов коррозии. Наряду с этим покрытие может часто действовать как анодное для стали и для менее коррозионностойких алюминиевых сплавов. Хадсон [20] показал, что срок службы алюминиевого покрытия, нанесенного способом напыления на стали, в условиях очень агрессивной промышленной атмосферы Шеффилда составит 4,5 года при толщине покрытия 38 мкм и более 11,5 лет при толщине 75 мкм. Алюминиевое покрытие, полученное напылением толщиной 125 мкм, также обеспечивает полную защиту против расслаивающей коррозии и коррозионного растрескивания алюминиевых сплавов системы алюминий — медь —магний (НЕ 15) и алюминий — цинк—магний (ДТД 683) при испытаниях до 10 лет в промыщленной и морской атмосфере [25, 26]. [c.398]

    Алюминирование напыленных покрытий. Для работы при высоких температурах (от 550 до 900° С) рекомендуется нагрев стали с нанесенным на нее покрытием до 800— 900° С либо в слабой окислительной атмосфере, либо в каменноугольной смоле, для того чтобы вызвать диффузию на поверхности раздела сталь — алюминий. Окисление алюминиевого покрытия во время этой термообработки может быть также понижено или путем протекторной защиты гидроокисью кальция с силикатом натрия, или использованием в качестве покрытия сплава А1—0,75 d. Покрытие распылением с последующей термообработкой известно под названием алюминирование , однако правильнее термин алюминирование напыленного покрытия для отличия от процесса алюминирования при погружении в горячий расплав, который производится (после предварительной обработки металлической поверхности) путем погружения в ванну с расплавленным алюминием. [c.401]

    Сопротивление коррозии алюминиевого покрытия равно сопротивлению коррозии алюминия той же толщины. Особое поведение наблюдается у напыленных покрытий (что обычно связано с текстурой), а также у покрытий, полученных методом алюминирования, и других покрытий, в которых происходит процесс диффузии из основного металла. [c.404]

    Из всех металлов, наносимых в качестве покрытий способом распыления, алюминий является предпочтительным в агрессивных средах, таких как морская среда, в подкисленных средах и в промышленной атмосфере, содержащей примеси сернистого газа и других серусодержащих веществ. Алюминиевые покрытия являются менее подходящими, чем цинк, в большинстве сильнощелочных сред. Покрытия, состоящие из смеси или соединений состава алюминий — цинк, приблизительно в соотношении 65 2п — 35 А1 уже используются в промышленном масштабе сообщают, что первоначально образующиеся пятна ржавчины, иногда связанные с недостаточной защитой алюминиевым покрытием, на данном покрытии отсутствуют. Покрытие смесью алюминий — цинк может также обеспечить гальваническую защиту некоторых алюминиевых сплавов, где обычно покрытие только одним алюминием не обеспечивает необходимой электрохимической защиты. Были проведены испытания двухслойных покрытий, полученных путем напыления или алюминия и цинка, или двух сортов алюминия, для проверки защиты покрытия от появления пятен ржавчины или улучшения протекторной защиты. В этом опыте такая двойная система защиты не имела преимуществ по сравнению с покрытием из слоя одного металла. [c.405]

    Испытания для Коррозионного подкомитета Американского общества по сварке были проведены Кларком в жесткой морской и промышленной атмосфере. За четыре года выдержки наибольшую защиту сталей показали напыленные алюминиевые покрытия в комбинации с виниловым лакокрасочным покрытием, пигментированным алюминием, в следующих средах в морской атмосфере, при погружении в морскую воду, при переменном погружении в морскую воду и экспозиции на воздухе (условия отливов и приливов), в промыщленной атмосфере, загрязненной соединения серы. [c.405]

    Вплоть до 750° С характеристики всех алюминиевых диффузионных покрытий можно считать очень хорошими, однако выше этой температуры результаты могут зависеть от толщины покрытия, диффузионной обработки и специфических сред, встречающихся во время эксплуатации. Напыленные алюминиевые покрытия можно использовать до температуры 900° С после диффузионной обработки. На покрытия, полученные погружением в горячий расплав, также благотворно действует диффузионная обработка. При этом переход кремния из сплава-покрытия в сплав-основу улучшает характеристики при увеличении температуры. [c.406]

    Катодное поведение электростатических и электрофоретических алюминиевых покрытий подобно поведению чистого алюминия. Они сильно поляризуются уже при малых плотностях тока и имеют достаточно высокое перенапряжение вьщеления водорода. Электрофоретические алюминиевые покрытия обладают наибольшим значением перенапряжения водорода по сравнению с покрытия.ми, пол>ченны. ш ikj собом электростатического и вакуумного напыления. При получении покрытий из порошковых материалов на электрохимические свойства [c.81]

    Контакт стали с алюминием разблагораживает ее потенциал до менее значительных величин. По данным В.В. Герасимова, алюминиевое покрытие с толщиной 0,3 мм, полученное газопламенным напылением, обеспечивает катодную защиту стали марки ОХ18ШОТ в хлорсодержащих средах. В контакте со сталью скорость коррозии алюминия растет на порядок и близка к измеряемому току пары, равному 19,1 мкА/см . Потенциалы стали, В (по н,в.э),.в центре непокрытого участка в зависимости от его диаметра приведены ниже. [c.85]

    Фирма Met o провела 18-летние испытания пластин из малоуглеродистой стали с цинковыми и алюминиевыми покрытиями, полученными путем газопламенного напыления [218]. Образцы экспонировались на средней отметке прилива и при полном погружении в двух различных местах. Атмосферные испытания проводили в шести различных местах и включали экспозицию в сельской, промышленной и морской атмосферах, а также в солевом тумане. Полученные результаты показали, что исследованные покрытия обеспечивают защиту малоуглеродистой стали во всех перечисленных средах а течение 18 лет и более. [c.196]

    Алкилалюминийгалогениды, в частности этилалюминийбромиды, являются также эффективными катализаторами алкилирования этилбензола и циклогексепа. Кроме того, алкилалюминийгалогениды, как и алюминийтриалкилы, используются для напыления металлического алюминия на различные поверхности, а также для нанесения гальванического алюминиевого покрытия. [c.379]

    Такая система покрытий обеспечивает защиту стальной основы от водородного охрупчивания и коррозии и изнашивания гидро- или газоабразивным потоком. Двухслойное покрытие с наружным слоем, состоящим в основном из оксида алюминия, можно получать последовательным плазменным напылением с плавным переходом от А1 к А12О3 или окислением части нанесенного алюминиевого покрытия. [c.54]

    Алкилалюминийгалогениды, как и алюминийтриалкилы, довольно широко применяют в качестве компонентов каталитических систем при полимеризации. Для полимеризации непредельных соединений наиболее предпочтительно использовать алкилалюминийхлориды совместно с тетрахлоридом титана. Алкилалюминийгалогениды, в частности этилалюминийбромиды, являются также эффективными катализаторами алкилирования этилбензола и циклогексена. Кроме того, алкилалюминийгалогениды, как и алюминийтриалкилы, используют для напыления металлического алюминия на различные поверхности и для нанесения гальванического алюминиевого покрытия. [c.402]

    Конечно, вред, причиняемый коррозией, можно уменьшить, если вместо обычных сталей применять нержавеющие стали с повышенным содержанием хрома и никеля, однако это дорого. Более дешевый способ-напыление на обычную сталь слоя алюминия или хрома толщиной менее 0,(Ю1 мм. Когда после второй мировой войны возникла необходимость заменить белую жесть (сталь, покрытую слоем цинка), применявшуюся для изготовления консервных банок и других целей, то в США в качестве заменителя была создана хромированная жесть. Она нашла широкое применение для изготовления емкостей для пива и других напитков. В ГДР в настоящее время разработана сталь с алюминиевым покрытием (эбаль), не уступающая по качеству белой жести. С помощью этого материала может быть удовлетворено 60-70% потребности в белой жести в нашей республике. [c.274]

    При электродуговом напылении пористость металлизационных цинковых и алюминиевых покрытий составляет примерно 12 и 14% соответственно. Их плотность повышают обработкой механическим и химическим способом или нанесением лакокрасочных материалов. Механический способ состоит в обработке покрытий стальными проволочными щетками (карцовка), в ре- [c.229]

    Исходя из положения алюминия в электрохимическом ряду, можно было бы ожидать, что он будет защищать сталь в местах несплошностей более эффективно и на более обширной площади, чем цинк. Однако алюминий с окисной пленкой более электроположителен, чем цинк, и, таким образом, хотя напыленный алюминий и будет защищать сталь за счет собственного растворения, его действие в этом отношении не будет столь эффективным, как защитное действие цинка. Таким образом, электролит, прошедший через напыленное алюминиевое покрытие в первые часы после его нанесения, вызовет коррозию с образованием нерастворимых продуктов, которые полностью закупоривают поры в алюминии, и поэтому после небольшого отрезка времени алюминиевое покрытие становится абсолютно непроницаемым для влаги. В случае механического нарушения покрытия этот механизм самозалечивания дополняется защитным действием алюминия за счет его анодного растворения. В результате образуются нерастворимые продукты коррозии, и место нарушения в покрытии тотчас же залечивается. Алюминий не дает больших по объему продуктов коррозии и поэтому слой краски, покрывающий напыленное покрытие, не вспучивается. Алюминиевые покрытия на стали, полученные методом распыления, экспонировали более 20 лет в очень суровых атмосферных условиях (Конгелла) и показали прекрасные защитные свойства. Единственным результатом такой длительной выдержки было появление небольшого числа маленьких бугорков окисла алюминия, которые, по-видимому, не могут явиться центрами коррозии в будущем. Алюминиевые покрытия чрезвычайно привлекательны тем, что обеспечивают защиту как в условиях погружения, так и в атмосферных условиях, но наиболее ценной является их стойкость в коррозионно активных электролитах, обладающих и высокой электропроводностью. Алюминиевые напыленные покрытия дают хорошие результаты в морской воде и обладают прекрасной стойкостью в сернистых атмосферах, однако в средах, содержащих серу и хлор, растворимость продуктов коррозии алюминия, повидимому, повышается, и поэтому для защиты от коррозии в таких комбинированных средах предпочтение отдают цинковому покрытию. Если свеженапыленное на сталь алюминиевое покрытие экспонируется в течение нескольких часов в чистой воде, то оно иногда покрывается бурыми пятнами, что обусловлено катодным действием алюминия на сталь в эти первые несколько часов, По-видимому, такое действие связано с наличием в покрытии окисных слоев. Очень небольшое количество железа корродирует (растворяется) в течение начального периода выдержки, но затем алюминий начинает действовать как обычно, т. е. как анод. Образующиеся нерастворимые окислы [c.382]

    Скотт показал, что неокрашенное напыленное покрытие толщиной 0,075 мм алюминия и цинка обеспечивает хорошую защиту в течение 15 лет в морской и сельской атмосферах, несколько лучшую по сравнению только с алюминиевым покрытием. Испытания в промышленной атмосфере показали, что алюминиевые покрытия после 15 лет эксплуатации превосходят цинковые покрытия. При погрул<ении в морскую воду цинковые покрытие толщиной 0,075 мм сохраняется только в течение четырех лет, в то время как той же толщины алюминиевое покрытие обеспечивает защиту стали более чем 14 лет. [c.405]


Смотреть страницы где упоминается термин Алюминиевые покрытия напыление: [c.77]    [c.77]    [c.82]    [c.75]    [c.75]    [c.152]    [c.382]    [c.390]    [c.403]    [c.406]   
Коррозия (1981) -- [ c.401 ]




ПОИСК





Смотрите так же термины и статьи:

алюминиевый



© 2025 chem21.info Реклама на сайте