Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вода внеклеточная

Таблица 5.1. Ионы аксоплазмы и крови кальмара. Внеклеточная концентрация ионов (кровь) практически равна ионной концентрации морской воды, которая обычно используется как внешняя среда в экспериментах с гигантскими аксонами кальмаров Таблица 5.1. Ионы <a href="/info/1276959">аксоплазмы</a> и крови кальмара. Внеклеточная <a href="/info/8062">концентрация ионов</a> (кровь) практически равна <a href="/info/8062">ионной концентрации</a> <a href="/info/69623">морской воды</a>, которая <a href="/info/1894727">обычно используется</a> как <a href="/info/5991">внешняя среда</a> в экспериментах с <a href="/info/1276958">гигантскими аксонами</a> кальмаров

    Аэробная переработка стоков —это самая обширная область контролируемого использования микроорганизмов в биотехнологии. Она включает следующие стадии 1) адсорбция субстрата на клеточной поверхности 2) расщепление адсорбированного субстрата внеклеточными ферментами 3) поглощение растворенных веществ клетками 4) рост и эндогенное дыхание 5) высвобождение экскретируемых продуктов 6) выедание первичной популяции организмов вторичными потребителями. В идеале это должно приводить к полной минерализации отходов до простых солей, газов и воды. Эффективность переработки пропорциональна количеству биомассы и времени контактирования ее с отходами. [c.249]

    Внутриклеточная вода Внеклеточная вода [c.64]

    Поступление, распределение и выделение из организма. В организме животных и человека К. играет важную роль, участвуя в генерации биоэлектрических потенциалов, поддержании осмотического давления, участвует в углеводном обмене, синтезе белков. Он является основным внутриклеточным катионом. К. поступает в организм с пищей и водой. В организме взрослого содержится 4000—9000 мэкв К. или 160— 250 г, из них только 2 % находится во внеклеточной жидкости (интерстициальная жидкость, плазма крови). Суточная потребность в К. составляет 2—3 г у взрослых, 12—16 мг/кг у детей. Содержание К. (в мэкв) тело со скелетом 68, кости 15, зубы 17, мышцы 100, сердце 64, легкие 38, мозг 84, печень 55, почки 45, эритроциты 150, сыворотка крови 4,5 спинномозговая жидкость 2,3 лимфа 2,2. Обмен К. в организме происходит чрезвычайно интенсивно за 1 минуту в клетках мозга обменивается 3,3—4 % К- в сетчатке глаза 8—10,7%, Выведение [c.49]

    В настоящее время в значительной степени изучены молекулярные механизмы реабсорбции и секреции веществ клетками почечных канальцев. Так, установлено, что при реабсорбции натрий пассивно поступает из просвета канальца внутрь клетки, движется по ней к области базальной плазматической мембраны и с помощью натриевого насоса поступает во внеклеточную жидкость. До 80% энергии АТФ в клетках канальцев почек расходуется на натриевый насос . Всасывание воды в проксимальном сегменте происходит пассивно в результате активного всасывания натрия. Вода в этом случае следует за натрием. Кстати, в дистальном сегменте всасывание воды происходит вне всякой зависимости от всасывания ионов натрия этот процесс регулируется антидиуретическим гормоном. [c.611]

    По местонахождению в организме воду разделяют на две группы вода внутриклеточных жидкостей и вода внеклеточных жидкостей. [c.151]


    Известно, что общее содержание воды в организме человека составляет 60—65% от массы тела, т.е. приблизительно 40—45 л (если масса тела 70 кг) 7з общего количества воды приходится на внутриклеточную жидкость, 7з — на внеклеточную. Часть внеклеточной воды находится в сосудистом русле (5% от массы тела), большая часть—вне сосудистого русла—это межуточная (интерстициальная), или тканевая, жидкость (15% от массы тела). Кроме того, различают свободную воду , составляющую основу внутри- и внеклеточной жидкости, и воду, связанную с различными соединениями ( связанная вода ). [c.582]

    Между животными клетками, с одной стороны, и растительными и бактериальными — с другой, имеется несколько кардинальных различий. К их числу относятся различия в среде обитания зтих клеток. Клетки животного организма погружены в специально созданную жидкую среду — кровь или лимфу. Эти жидкости в известном смысле подобны по составу древнему Океану, в котором некогда возникла жизнь (часто говорят поэтому, что животные носят в себе частицу моря). Суммарные молярные концентрации низкомолекулярных веществ во внеклеточных жидкостях животного и в цитоплазме близки. Позтому животные клетки находятся в осмотическом равновесии со средой, а их мембраны не подвергаются механическим нагрузкам за счет неравновесной диффузии воды внутрь клетки или из нее. [c.147]

    Не для всех видов производственных сточных вод выделение регенераторов целесообразно. Если внеклеточная переработка очень длительна и сопоставима со скоростью потребления кислорода, то необходимость в устройстве регенераторов отпадает. [c.189]

    Содержание воды в клетках достигает 65—80%. В протоплазме на каждую молекулу белка приходится около 1800 молекул воды, причем состав ее в клетках непрерывно обновляется. В зависимости от условий культивирования содержание воды в клетках может меняться. Часть воды находится в межклеточном пространстве, это внеклеточная вода, а часть воды находится в самих клетках. В свою очередь находящаяся в клетках вода может быть в свободном и в связанном с поверхностью макромолекул виде. [c.23]

    Вьщеленные индивидуальные гликозаминогликаны могут содержать смесь цепей различной длины (рис. 5.5). Гликозаминогликаны как основное скрепляющее вещество связаны со структурными компонентами костей и соединительной ткани. Их функция состоит также в удержании большой массы воды и в заполнении межклеточного пространства. Иными словами, гликозаминогликаны —основной компонент внеклеточного вещества—желатинообразного вещества, заполняющего межклеточное пространство тканей. Они также содержатся в больших количествах в синовиальной жидкости-это вязкий материал, окружающий суставы, который служит смазкой и амортизатором. [c.187]

    Поэтому для изучения сродства и влияния ряда флавоноидов различной структуры — агликонов и гликозидов — на мембраны клеток тканей артерий и вен крыс бьш использован метод спиновых зондов, в котором липофильный спиновый зонд 5 вводили в раствор, содержащий отрезок изучаемого сосуда. При этом зонд 5 встраивался в липидный бислой мембран клеток ткани сосудов и был недоступен для внеклеточной воды. По спектрам ЭПР определяли параметры вращатель- [c.577]

    При определенных обстоятельствах микроорганизмы способны запасать органические и неорганические вещества в клетках (табл. 3.2а). Запасные вещества хранятся в полимерной форме внутри клетки. Микроорганизмы также способны превращать органический субстрат во внеклеточные полимерные вещества (ВПВ). Являются ли такие вещества запасными для микроорганизмов — это вопрос спорный, так как микроорганизмы обычно их в дальнейшем не используют. В процессе биологической очистки воды обнаружено три типа запасных веществ. [c.97]

    Флокуляция с участием внеклеточных полимеров проходит по обычной схеме и заключается в образовании полимерных мостиков между микроорганизмами и бактериальными клетками активного ила. Флокуляция сопровождается увеличением количества коллоид- но-связанной воды и замедлением скорости фильтрования через пористую перегородку. - [c.110]

    Согласно теории образования хлопьев активного ила, основанной на взаимодействии внеклеточных высокомолекулярных полиэлектролитов, последние наиболее интенсивно образуются в эндогенной фазе развития культуры, и в этот период после осаждения биомассы наблюдается наименьшая мутность жидкой фазы. В связи с этим в практике очистки воды и последующего сгущения суспензии активного ила важно учитывать воз- [c.68]

    Количество циркулирующего альбумина зависит от общего объема плазмы. Потеря альбумина у больных с патологией почек приводит к разнице в осмотическом давлении между плазмой крови и внеклеточной жидкостью, что обусловливает отток воды из клеток во внеклеточное пространство. [c.999]


    Если выпить большое количество морской воды, то общая концентрация электролитов во внеклеточной жидкости окажется гораздо выше, чем внутри клеток. Такой градиент концентрации вызывает отток воды из клеток во внеклеточное пространство. По мере обезвоживания клеток нежные внутриклеточные органеллы (например, митохондрии) съеживаются и в конце концов необратимо повреждаются. [c.999]

    Соли натрия и калия. Соли натрия и калия содержатся во всех тканях, причем соли натрия главным образом во внеклеточных жидкостях—в плазме крови, лимфе, пищеварительных соках и т. д., а соли калия — в содержимом клеток. Соли натрия способствуют удержанию воды в тканях, а соли калия и кальция — удалению воды из тканей. Соли натрия влияют на рост организма. Соли калия угнетают сердечное сокращение. Нерастворимые соли кальция и магния (фосфорнокислые, углекислые и фтористые) входят в состав костей, а растворимые соли (хлористоводородные) — в состав плазмы крови и всех биологических жидкостей. Соли кальция играют боль- [c.240]

    Поверхностные покрытия (краски различные типы лаков) играют двоякую роль они выполняют декоративную функцию и защищают покрываемую поверхность от вредных воздействий среды, в том числе и от микроорганизмов. Из-за постепенное отказа от введения свинца в состав красок и широкого распространения эмульсионных покрытий возникла проблема биоповреждения самих красок. Такое повреждение происходит как при хранении красок в емкостях, так и после нанесения их на поверхность и высыхания с образованием пленки. Большинство исследований в этой области направлено на создание эффективных защитных систем, которые действовали бы все то время, пока существует данное покрытие. Краски содержат пигменты, связывающие вещества, эмульгаторы, масла, смолы и смачивающие агенты они могут быть растворены в воде или в специальных растворителях. Некоторые из этих ингредиентов, например казеин, крахмал, целлюлоза и пластификаторы,, могут разрушаться микробами, а применение альтернативных, устойчивых к микробному разрушению компонентов зачастую невозможно. Развитие микроорганизмов в пленках очень сильно зависит от факторов окружающей среды температуры, влажности, наличия на поверхности питательных веществ (например, удобрений, приносимых ветром). Повреждения в емкостях часто связаны с жизнедеятельностью бактерий, но могут быть обусловлены и развитием грибов. Кроме того, в жидких эмульсионных красках могут оставаться внеклеточные ферменты, например входящие в состав целлюлазной системы эти ферменты способны снижать вязкость эмульсии. [c.241]

    Высушенные до влажности около 8% дрожжевые клетки находятся в состоянии анафюза. Для сушки наиболее пригодны дрожжи плотной консистенции с содержанием внеклеточной влаги 12—17% при общей влажности 70—71%. Вода в дрожжевой клетке находится в форме адсорбционно и осмотически связанной. Адсорбционно связанная влага прочно удерживается коллоидами клетки и трудно испаряется. Потеря ее в большинстве случаев сопровождается гибелью клетки, поэтому дрожжи высушивают до влажности не. менее 8%. Осмотически связанная влага (влага набухания), так же как и внеклеточная, удаляется без нарушения структуры клетки. [c.365]

    Важную группу полисахаридов составляют гликозаминогликаны, к которым относятся гиалуроновая кислота, хондроитинсульфаты и кератансульфат. Было показано, что в ориентированных пленках молекулы этих соединений в зависимости от типа присутствующих катионов могут принимать целый ряд взаимо-превращаемых конформаций [12]. Эти конформации представляют собой группу левых спиралей, упакованных антипараллельно и отличающихся в основном степенью растянутости. Наиболее сжатой является одна из конформаций гиалуроновой кислоты, в которой одна молекула закручена вокруг другой с образованием двойной спирали [13] во всех остальных случаях молекулы упакованы бок о бок . В некоторых случаях удалось детально выяснить строение молекул, что для волокнистых веществ, в отличие от кристаллических, очень трудно сделать удалось даже выявить положение молекул воды и геометрию участков молекул, координированных вокруг катионов [14]. Важными вехами на пути понимания конформационных принципов строения полисахаридных цепей стали а) первый пример установления с помощью, рентгеноструктурного анализа упорядоченной конформации разветвленного полисахарида (внеклеточного полисахарида Е. oli) это позволило предположить, что наличие ветвлений играет важную роль при ориентации боковых цепей антипараллельно основной цепи и стабилизации таким образом конформации молекул полисахарида посредством нековалентных взаимодействий [15] б) первое изучение этим же методом структуры кристаллического гликопротеина, которое показало упорядоченность конформации его углеводной части [16]. Ко времени опубликования работы [16] определение строения (F -фрагмента иммуноглобулина G) не было доведено до конца, однако уже можно было сделать ряд важных выводов, которые будут рассмотрены ниже. [c.283]

    Натрий и калий встречаются в организме преимущественно в виде ионов хорошо растворимых в воде солей эти элементы содержатся во всех тканях. Характерным является наличие большого количества натриевых солей (главным образом хлоридов, фосфатов и бикарбоната натрия) во внеклеточных жидкостях — плазме крови, лимфе, пищеварительных соках, эксудатах и т. п. Соли калия, наоборот, обычно преобладают в содержимом клеток. [c.391]

    Известную роль в качестве органа выделения солей играет также кожа с ее потовыми железами. Пот на 99,5% состоит из воды. В состав сухого вещества пота входят как органические соединения, например мочевина, так и неорганические соли. Основная масса неорганических солей представлена хлористым натрием — важнейшим неорганическим соединением плазмы крови и других внеклеточных жидкостей. Если принять во внимание, что человек при усиленном потоотделении может в течение суток терять несколько литров пота, то тогда станет ясно, что -420 [c.420]

    В трансформации соединений фосфора, как и азотг., принимают участие организмы практически всех трофических уровней. Растворенные фосфаты (DIP) потребляются водорослями и бактериями и трансформируются в органические соединения — эфиры фосфорной кислоты. Этот органический фосфор живого вещества включается в пищевую цепь на всех уровнях. В процессе жизнедеятельности организмов выделяются фосфаты и растворенные фосфорорганические соединения (DOP), а также образуется костное взвешенное фосфорсодержащее органическое вещество — детритный фосфор (Dp). При автолизе в воду весьма быстро поступает 30—40% DOP, которые утилизируются гетеротрофными бактериями, а также гидролизуются внеклеточной фосфатазой до DIP. Кроме того, DOP, как показано в многочисленных работах, может непосредственно ассимилироваться фитопланктоном. [c.160]

    Внешний гидролиз. Внеклеточные ферменты бактерий диффундируют из биопленки в толшу воды, где и происходит гидролиз. Продукты гидролиза затем диффундируют в биопленку и там разлагаются. Этот механизм был экспериментально продемонстрирован на примере крахмала, не способного диффундировать внутрь биопленки. Кинетические уравнения, описывающие этот механизм, в упрощенном виде рассматриваются ниже. [c.235]

    Одна иа наиболее сложных задач на третьей стадии обработтси сточных вод путем выдерживания в лагунах - это задача выделения водорослевой клеточной ткани и большого количества внеклеточных органических веществ, вырабатываемых водорослями. [c.293]

    Поступление, распределение и выведение иэ организма. В организме Н. играет важнейшую роль, являясь одним из основных элементов, участвующих в минеральном обмене, в поддержании осмотического давления, кислотно-щелочного равновесия, Б проведении нервных импульсов. Основные источники поступления Н. в организм — питьевая вода и пища. Концентрация Н. в 2100 обследованных водных системах США, снабжающих питьевой водой около половины населения страны, находится в пределах 0,4—1900 мг/л, при этом в 42 % водных систем эта величина более 20 и в 5 % — более 250 мг/л. Ежедневное количество H., поступающего в организм взрослого человека, составляет в США 1600—9600 мг (Сгаип Luft, Ganten). В организме Н. находится, в основном, во внеклеточной жидкости весь обменный Н. в организме взрослого составляет 3890 мэкв, при этом в 17,5 л внеклеточной жидкости содержится 2450, во внутренней среде, составляющей 30,3 л — 1440 мэкв. [c.40]

    У морских ежей кратковременное повышение концентрации Са активирует специфические транспортные белки в плазматической мембране яйца (возможно, при участии кальмодулина), которые используют энергию, запасенную в виде трансмембранного градиента иоиов Na , для откачивания ионов Н из клетки (см. разд. 6.4.10). Отток ионов приводит к тому, что внутриклеточная величина pH возрастает с 6,6 до 7 и в дальнейшем поддерживается на этом уровне (см. рис. 14-48). Есть данные в пользу того, что именно это повышение pH индуцирует в оплодотворенных яйцах морского ежа позднюю биосинтетическую активность. Во-первых, если повысить pH в неопло-дотворенных яйцах, инкубируя их в среде, содержащей аммиак (рис. 14-52), то процессы синтеза белков и репликации ДНК заметно усиливаются даже без повышения внутриклеточной концентрации свободных ионов Са . Во-вторых, если сразу после оплодотворения поместить яйца в морскую воду, не содержащую ионов Na (так что не будет градиента Na для откачивания ионов Н ), внутриклеточный уровень pH не повышается н поздние события, связанные с активацией яйца, не наступают. Такие яйца еще можно спасти, добавив к среде аммиака тогда pH в клетке возрастает и даже прн отсутствии внеклеточного Na индуцируется синтез белков и ДНК. [c.48]

    Благодаря плазмодесмам растительный организм оказывается не простой совокупностью отдельных клеток, а сложным сообществом взаимосвязанных живых протопластов. Позтому все тело растения можно рассматривать как систему, которую образуют два компартмента 1) внутриклеточный компартмент-так называемый симпласт, состоящий из объединенного множества протопластов (в том числе протопластов ситовидных трубок флоэмы) и ограниченный объединенной плазматической мембраной всех жнвых клеток, и 2) внеклеточный компартмент, или апопласг, включающий все клеточные стенки и мертвые пустые проводящие клетки ксилемы, а также находящуюся в тех и других воду (рис. 19-18). Оба компартмента имеют свои собственные транспортные системы, однако в определенных точках онн могут сообщаться между собой, а также подвергаться локальной модификации для обеспечения контроля протекающих между ними обменных процессов. [c.175]

    Хотя неповреждённый барьер кровь-ткань непроницаем для больших молекул, но газы, вода, глюкоза, электролиты и аминокислоты проходят через него к нейронам и во внеклеточное пространство. Механизмы, посредством которых осуществляется этот пассаж, следующие (George M.S. et al. — 1991)  [c.447]

    Нарушения проницаемости барьера кровь-ткань происходят при различного рода травмах, воспалительных процессах и инсультах, что сопровождается существенными изменениями количества внутри- и внеклеточной воды, электролитов и белков. В связи с этим авторы рассматривают две группы радиоиндикаторов, пригодных для получения сцинтиграмм головного мозга. [c.447]

    Измерение внутриклеточных концентраций метаболитов. Измерение концентраций промежуточных продуктов метаболизма в живой клетке сопряжено с большими экспериментальными трудностями. Поскольку клеточные ферменты катализируют быстро протекающие метаболические превращения, одна из обычных проблем при всяком экспериментальном вмешательстве в жизнь клетки связана с тем, что данные, полученные путем измерений, отражают не физиологические, а равновей1ые концентрации метаболитов. Поэтому любая экспериментальная методика будет надежной лишь в том случае, если с ее помощью удастся мгновенно подавить все ферментативные реакции в интактной ткани и тем самым предотвратить дальнейшие превращения промежуточных продуктов метаболизма. Этой цели можно достичь путем быстрого сжатия ткани между большими алюминиевыми пластинами, охлажденными жидким азотом ( —190°С) такой прием носит название фиксация замораживанием . После замораживания, мгновенно подавляющего действие ферментов, ткань растирают в порошок и ферменты инактивируют путем осаждения хлорной кислотой. Осадок удаляют центрифугированием, а прозрачную надосадочную жидкость анализируют на содержание в ней метаболитов с помощью специфических ферментативных тестов. Истинную концентрацию данного метаболита в клетке определяют расчетным путем, учитывая общее содержание воды в ткани и данные измерений объема внеклеточного пространства, В табл. 1 приведены кажущиеся внутриклеточные концентрации субстратов и продуктов реакции фосфорилирования фруктозо-6-фосфата, катализируемой фер- [c.474]

    Токсическое действие морской воды. Почки человека-великолепное устройство, регулирующее удаление ионов Ыа из крови путем образования мочи, в которой содержание ионов Ка достигает 340 мМ. Однако в морской воде концентрация N3 вдвое выше той, которую способны создать почки здорового человека. Если человек пьет только морскую воду, то происходит накопление КаС1 во внеклеточной жидкости (т.е. в жидкости, окружающей клетки тела), но не во внутриклеточной жидкости. Длительное потребление морской воды приводит к смерти вследствие повреждения клеток мозга. Почему потребление морской воды на протяжении длительного времени вызывает повреждение клеток  [c.778]

    Полисахариды служат источником энергии и структурными компонентами клеточных стенок и внеклеточных капсул. Многие из этих полимеров, имеющие коммерческую ценность как шромышленные клеи, были получены из растительных тканей (экстракты семян и морских водорослей, древесные экссудаты щ т. п.). Способность таких полисахаридов изменять реологические свойства воды, вызывая образование геля и влияя на [c.217]

    Общий объем жидкости в организме также можно определить по разбавлению инъецированного вещества подобно определению объема плазмы или внеклеточного объема. Для этого используется антипирин или Ы-аце-тил4-аминоантипирин [18—20]. Точность этого метода, однако, также снижается из-за метаболического изменения строения, связывания антипирина протеинами плазмы и аналитического предела обнаружения антипирина. Идеальным средством определения жидкости в организме является вода, меченная тритием (Н 0) [21—23]. [c.320]

    Известную роль в качестве органа выделения солей играет также-кожа с ее потовыми железами. Пот на 99,5 % состоит из воды. В состав сухого вещества пота входят как органические соединения, например мочевина, так и неорганические соли. Основная масса неорганических солей представлена хлористым натрием — важнейшим неорганическим соединением плазмы крови и других внеклеточных жидкостей. Если принять во внимание, что человек при усиленном потоотделении может в течение суток терять несколько литров пота, то тогда станет ясно, что обильное потоотделение должно вызывать заметное обессоливание организма, вредно отражающееся как на общем самочувствии человека, так и на его работоспособности. Именно поэтому рабочим горячих цехов, солдатам во время продолжительных маршей и т. д. рекомендуется время от времени пить не чистую, но слегка подсоленную воду (И. П. Разенков). [c.398]


Смотреть страницы где упоминается термин Вода внеклеточная: [c.240]    [c.75]    [c.254]    [c.84]    [c.201]    [c.295]    [c.15]    [c.513]    [c.166]    [c.292]    [c.61]   
Биохимия человека Т.2 (1993) -- [ c.128 ]

Биохимия человека Том 2 (1993) -- [ c.128 ]




ПОИСК





Смотрите так же термины и статьи:

Замерзание воды внутриклеточное и внеклеточное



© 2025 chem21.info Реклама на сайте