Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозионные методы

    Исследование анодных и коррозионных процессов проводилось с помощью всего арсенала электрохимических методов, чаще всего поляризации в потенциостатическом, потенциодинамическом и гальваностатическом режимах, в сочетании с чисто коррозионными методами — весовым, рентгенографическим, спектральным и т. д. [7]. [c.107]

    Практической целью коррозионных исследований является определение долговечности материала в условиях эксплуатации, выяснение типа коррозии и выявление ее причин. По условиям испытания все коррозионные методы подразделяются на три группы  [c.54]


    Пористость коррозионными методами определяется без наложения и при наложении тока. Образец с покрытием подвергается действию коррозионного агента, который, разрушая подкладку, не действует на металл покрытия. В местах пор появляются продукты коррозии, которые и характеризуют пористость. Исходя из сущности метода видно, что пористость может определяться и при проведении уже рассмотренных коррозионных испытаний. Однако удобнее определять пористость, применяя реактивы, дающие с основным металлом окрашенные соединения. В табл. 19 приведены составы растворов для ряда покрытий и способы испытания пористости последних [12]. [c.176]

    Коррозионные свойства масел оцениваются по ГОСТ 5162—49 (метод Ю. А. Пинкевича). Прибор для определения коррозионных свойств масел (рис. 91) состоит из масляной бани 6, стеклянных пробирок 5, в каждую из которых заливают до 80 мл испытуемого масла, и механизма 2, обеспечивающего попеременное погружение свинцовых пластинок 4 стандартного размера в пробирки с маслом нагретым до 140° С, и извлечение их оттуда. Пластинка погружается 15 раз в минуту, продолжительность испытания 50 ч. Степень корро-166 [c.166]

    Методы, связанные с изменением свойств коррозионной среды. [c.503]

    Лабораторными методами коррозионность масла оценивается по следующим характеристикам  [c.60]

    Основные способы борьбы с коррозионным износом оборудования можно условно разделить на три группы использование химико-технологических методов, применение коррозионно-стойких металлов и защитных неметаллических покрытий. [c.72]

    В такой представительной группе технологического оборудования, как трубчатые печи, теплообменники, аппараты, металлические резервуары, порядок ревизии, ее периодичность и отбраковка элементов определяются Инструкцией по техническому надзору, методам ревизии и отбраковке оборудования нефтеперерабатывающих и нефтехимических производств (ИТН—77) и Руководящими указаниями по эксплуатации и ремонту сосудов и аппаратов, работающих под давлением ниже 0,7 кгс/см (0,07 МПа) и вакуумом (РУА—78). В этих документах полностью отражены вопросы надзора за указанным оборудованием, приведены методы ревизии и нормы отбраковки элементов, объем ревизии и периодичность в зависимости от технологических процессов и коррозионного воздействия среды, указаны формы необходимых документов по эксплуатации и ремонту. [c.196]

    Очищенные таким методом буровые сточные воды по коррозионной активности соответствуют чистым водам, в большинстве случаев прозрачны. Их можно повторно использовать в технологических процессах бурения скважин. [c.199]


    Гибка двухслойных листов, плакированных коррозионно-стойкой сталью, может производиться как в холодном, так и в горячем состоянии, плакирующим слоем внутрь или наружу. Прокладки, соприкасающиеся при гибке с плакирующим слоем, изготовляют из коррозионно-стойкой стали, чтобы предотвратить налипание на поверхность плакирующего слоя частиц металла, что возможно при использовании обычной конструкционной стали. Холодная гибка двухслойной стали должна производиться при температуре не ниже 20° С. При гибке в горячем состоянии заготовки должны быть нагреты до 1150—1200 С их обработка должна завершаться при температуре не ниже 900—850° С. Заготовки, обработанные методом горячей деформации, должны быть подвергнуты последующей термической обработке, режимы которой приведены в табл. 10, а. [c.42]

    Концентрирование [5.46, 5.55, 5.59, 5.61, 5.65, 5.66]. Метод основан на разделении растворенных в воде соединений путем изменения их растворимости с изменением температуры или путем удаления части, а иногда и всего объема воды. Для концентрирования солей или органических примесей применяют выпаривание в поверхностных аппаратах, выпаривание под вакуумом, выпаривание при контакте сточной воды с перегретыми газами, кристалло-гидратные и вымораживающие установки. Полное удаление растворителя осуществляется в сушильных аппаратах. Выбор метода концентрирования зависит от состава и свойств извлекаемых соединений, их количества и коррозионной активности. В результате концентрирования чаще всего получают извлекаемые соединения в твердом или жидком виде и дистиллят, который может быть вторично использован в производстве. [c.490]

    В случае дальнейшей низкотемпературной ректификации или каталитической переработки фракций, получаемых на установке, в присутствии чувствительных к влаге катализаторов, газы необходимо предварительно осушить (во избежание образования гидратов или льда, а также коррозионного поражения оборудования). Осушку газов (на схеме также не показана) осуществляют методами абсорбции водным раствором диэтиленгликоля или адсорбции, на силикагеле, оксиде алюминия или цеолитах. [c.58]

    Аппарат для определения коррозионности масел по методу Пинкевича (рис. 146) состоит из электродвигателя 1 кулачковой муфты 2, соединяющей вал мотора с редуктором червячного редуктора 3 направляющей трубы 4 вала 5 с крыльчаткой 6 кривошипа 7 с шатуном 5 подвижного-кольца 5 масляной ванны с электронагревом, обеспечивающим нагрев масла в ванне до 140° С и поддержание постоянства этой температуры во время испытания крышки 11, имеющей восемь гнезд, в которые вставляются пробирки с испытуемым маслом, и отверстие для термометра кожуха 12 масляной ванны алюминиевой втулки 13 для [c.85]

    В настоящее время, наряду с методом Пинкевича, широкое распространение получает метод исследования коррозионности масел в приборе ДК-3 (ГОСТ 3245—56). [c.216]

    Это осуществляется при помощи вращающейся на наклонной оси кассеты карусельного типа. При работе прибора ДК-3 создаются условия для интенсивного и непрерывного контактирования испытуемого масла с воздухом. Кислород из воздуха свободно проникает в колбу, непрерывно перемешивается с маслом и окисляет его, что значительно ускоряет процесс коррозии по сравнению с коррозией, протекающей в приборе Пинкевича. Стандартом на метод определения коррозионности моторных масел в приборе ДК-3 предусматривается продолжительность испытания 10 ч вместо 50 ч по методу Пинкевича. Оба описанных метода применяют главным образом для оценки базовых масел. [c.216]

    Коррозионная агрессивность масел с присадками оценивается в приборе ДК-3 по ужесточенному стандартному методу (ГОСТ 8245—56) с удлинением срока окисления до 25 ч (вместо 10 ч) и применением катализатора окисления (0,02% нафтената меди). [c.216]

    Необходимость ужесточения стандартного метода определения коррозионности была вызвана тем, что условия испытания последнего оказались слишком легкими для выявления коррозионных свойств как базовых масел из сернистых нефтей, содержащих есте- [c.216]

    Показатель коррозионности масел нормируется также и для некоторых индустриальных и трансмиссионных масел, корродирующее действие которых испытывается на стальных пластинках (ГОСТ 1037—47). Метод заключается в погружении полированных стандартных пластинок в испытуемое масло при температуре 150° С в течение 2 ч и установлении изменения поверхности пластинок. [c.217]

    Методы испытания коррозионности масел приводятся в табл. 41. [c.217]

    Ужесточенный метод определения коррозионности по ГОСТ 8245—56 с добавлениями [c.217]

    Сущность метода заключается в окислении масла в специальных колбах в приборе ДК-3 (подробная характеристика прибора ДК-3 дана при описании метода определения коррозионности) в течение 50 ч при 200° С. Температура испытания 200 С установлена, исходя из того, что она приблизительно соответствует рабочим температурам картерного масла. Продолжительность испытания 50 ч выбрана с учетом того, что она должна превышать индукционный период окисления масел из сернистых нефтей, обусловленный наличием в них сернистых соединений. Определение стабильности по этому методу характеризуется образованием нерастворимого осадка и степенью повышения вязкости окисленного масла. Содержание осадка определяют путем разбавления навески окисленного образца растворителем, фильтрования раствора, промывания осадка на фильтре тем же растворителем и определения остатка взвешиванием. [c.219]


    Для некоторых смазок предусматривается ускоренный метод определения коррозионного их действия на металлы. Этот метод заключается в фиксировании изменения поверхности металлических пластинок, погруженных в исследуемую смазку, при воздействии на них высокой температуры. [c.228]

    Защитные свойства нефтепродуктов, т. е. их способность защищать металл, находящийся в объеме или под -пленкой нефтепродукта, от коррозионного действия воды, практически не зависят от качества самих нефтепродуктов и не могут быть значительно улучшены технологическими методами. [c.291]

    D 130-75). Удобство метода заключается в определении степени коррозионного поражения пластинок после испытаний по цветной эталонной шкале. [c.121]

    Однако указанный метод не дает представления о размере и характере пор и их распределении по поверхности, он определяет лишь среднюю пористость и применим только к очень тонким слоям (до 5 мк), а для применяемых в практике покрытий толщиной 25 мк, как показали Ф. Огберн и А. Бендер-ли [15], метод измерения газопроницаемости покрытия не выявляет пор, обнаруживаемых коррозионным методом. В некоторых случаях этот метод применяют после испытания образца методом ускоренной коррозии, который увеличивает начальную пористость [15]. [c.359]

    Фактические катодная и анодная плотности тока могут быть различными, если поверхность корродирующего металла разделена на участки, на которых возможно протекание либо только катодной, либо только анодной реакции. Это, однако, не имеет значения при определении общей скорости коррозии, и, следовательно, можно рассматривать поверхность корродирующего металла как эквипотенциальную . Характер совмещенных поляризационных кривых, получаемых по этому методу, показан на рис. 24.6 (сплошные линии). Точка пересечения анодной и катодной поляризационных кривых дает на оси абсцисс скорость коррозии, а на оси ординат — стационарный потенциал. Так как вблизи стационарного потенциала поляризационные 1 данные перестают укладываться в полулогарифмическую зависимость, то скорость коррозии находят обычно по точке пересечения экстраполированных прямоли-не/шых участков поляризационных кривых (пунктирные линии на рис. 24.6). Сопоставление величин скорости коррозии, рассчитанных на основании поляризационных измерений, с полученными непосредсвеино из убыли массы (или в кислых средах по объему выделившегося водорода) для свинца, никеля и железа показало, что оба ряда данных совпадают в пределах ошибок опыта. Это позволило широко использовать метод поляризационных измерений при количественном изучении коррозионных процессов. [c.500]

    К электрическим методам защиты относится также так называемый эле/сгрофенаж, применяемый для борьбы с разрушающим действием блуждающих токов на подземные металлические сооружения. Сущность электродренажа заключается в том, что после нахождения на подземном металлоизделии анодных зон, опасных в коррозионном отношении, их соединяют проводниками первого рода с источниками блуждающих токов (трамвайным рельсом, кабелем постоянного тока и т. п.). Тогда весь ток пойдет по металлическому проводнику, и опасность появления анодной реакции будет ликвидирована. [c.504]

    В этом отношении легирование является значительно более эффсктип . . (хотя обычно более дорогим) методом повышения коррозион с. и стойкости металлов. Примером повышекия коррозионной ст<,йк. сти металла легированием являются сплавы мсдн с золотом. Для надежной защиты меди необходимо добавлять к ией значительное количество золота (не менее 52,5 ат.%). Атомы золо- [c.505]

    В подавляющем большинстве случаев наибольшее значение имеют блокировочный, или механический, коэффициент уз и адсорбционный, или двойнослойный, коэффициент 74 кинетические коэффициенты Yi и у2 обычно мало отличаются от единицы. Так как уз и 74 можно найти не прибегая к прямым коррозионным измерениям, то появляется возможность теоретического расчета коэффициента торможения. Сопоставление расчетных коэффициентов торможения (yti op) кислотной коррозии железа и цинка с полученными экспериментально (уэксп) приведено в табл. 24.1. Необходимые для расчета значения коэффициентов переноса заимствовались из результатов поляризационных измерений, величины 0 (степень покрытия поверхности металла ингибитором) брались средними из данных трех независимых методов, изменение Аг1з принималось равным смещению максимума электрокапиллярной кривой в присутствии данной концентрации ингибитора — хлорида децил-З-оксипи-ридиния. Расхождение между расчетными и опытными значениями коэффициентов не превосходит обычных ошибок коррозионных измерений. [c.508]

    Коррозионность масла чаще всего определяется методом воздействия на металлическую пластинку. Испытанию подвергаются только те металлы, которые контактируют с маслом и являются наиболее чувствительными к воздействию коррозии. Коррозийность масла в присутствии воды определяется по стандарту ASTM D 665/Ргос.А, ГОСТ 19199-73 и оценивается терминами соответствует или не соответствует . [c.61]

    В целях экономии дорогостоящих коррозионно-стойких металлов используется технология изготовления двухслойных труб методом совместного волочения на волочильном стане. В частности, применяются также компоненты основного и плакирующего слоев как сталь 10 + сплав ВТ1-1, сталь 12Х18Н10Т + сплав ВТ1-1, сталь 10 + никель, сталь 10 + медь и др. По этой технологии трубы из стали 10 футеруются трубами из титанового сплава ВТ1-1, никеля, свинца или меди трубы из стали 25ХЗМВФ — трубами из титанового сплава ВТ1-1, меди или других материалов. [c.69]

    Комиссия, расследовавшая аварию, предложила ряд мер по усилению технического надзора за состоянием трубопроводов и аппаратов, работающих в коррозионной среде. Для сокращения сроков периодических осмотров и ревизий трубопроводов было предложено пересмотреть графики на проведение этих работ и внедрить неразрушающие методы контроля трубопроводов. Коррозионное воздействие агрессивных сред на углеродистую сталь, применяемую для изготовления аппаратов и трубопроводов в установках водной очистки, не может быть устранено. Поэтому целесообразно разработать более совершенные способы антикоррозионной защиты металлов и изготавливать оборудование из лепированных сталей. Для действующих установок на основе опыта эксплуатации рекомендовано регламентировать сроки ревизии и замены трубопроводов с тем, чтобы не допускать коррозионное разрушение до аварийного состояния трубопровода. [c.26]

    Метод определения коррозионности по Пинкевичу (ГОСТ 5162—49) заключается в воздействии на металлические пластинки нагретого масла, тонкий слой которого на пластинке периодически соприкасается с кислородом окружающего воздуха. Таким образом, отличительной чертой этого метода является то, что тонкий слой масла окисляется на поверхности металла, при этом обеспечивается чередующийся контакт металла с маслом и масляной пленки с воздухом и перемешивание масла. По методу Пинкевича коррозионность масла устанавливается по изменению веса пластинки после 50-часового испытания в масле при температуре 140°С. При определении коррозионности но этому методу испытуемое масло, находясь в пробирке, имеет малую поверхность контакта с воздухом и поэтому окисляется медленно окислению подвергается лишь тонкая пленка масла во время пребьгаания пластинки в воздухе. [c.216]

    В качестве квалификационных получили также широкое применение многие методы оценки окисляемости топлив и масел, их коррозионных и защитных свойств, нагарообразования и др. Так, для квалификационной оценки коррозионной активности смазочных масел широкое распространение получили безмоторные и моторные методы. К безмоторным относятся методы Пинкевича и ДК-НАМИ, к моторным — методы, основанные на использовании установки Рейег Ш-1 и двигателя ЯАЗ-204 [9]. [c.15]

    Жестко контролируют также смазочные свойства масел, их коррозионную агрессивность. В спецификации M1L-L-7806G (так же, как и в других спецификациях на синтетические масла для авиационных ГТД) контролируют спектральными методами химический состав масел до и после внесения в них функциональных присадок. Впервые в практике контроля качества в спецификации введено ограничение содержания в неработавшем масле различных металлов. [c.71]

    Наиболее распространенный метод оценки коррозионной агрессивности масел — испытание медной пластинки погружением ее на 1—3 ч в нагретое до 100- 150 °С масло (метод ASTM [c.120]


Смотреть страницы где упоминается термин Коррозионные методы: [c.58]    [c.353]    [c.447]    [c.353]    [c.7]    [c.28]    [c.71]    [c.51]    [c.506]    [c.31]    [c.36]    [c.63]    [c.102]   
Смотреть главы в:

Методы исследования электроосаждения металлов Изд.2 -> Коррозионные методы




ПОИСК







© 2025 chem21.info Реклама на сайте