Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экситон

    Систему связанных между собой электрона и дырки обычно называют экситоном . [c.137]

    Для карбазола — одного из основных азотсодержащих веществ нефти — исследованы физические свойства (электропроводность, магнитная восприимчивость) и установлено, что в его монокристалле имеются фазовые переходы при температурах, далеких от плавления. Показано, что носители заряда возникают при термической диссоциации молекулярных экситонов на примесях. [c.4]


    МИ позволил проводить измерения в интервале 76—300 К. Полученные результаты приведены на рис. 2. Наблюдаемая поляриза-дия полосы поглощения монокристалла карбазола указывает на то, что ответственные за поглощение коллективные возбуждения связаны с экситонными состояниями. Наличие экситонной полосы поглощения в области Я, = 35 энергии активации проводимости, позволяет предположить, что образование носителей заряда в карбазоле происходит за счет термической диссоциации молекулярных экситонов на примесях [6, 7]. [c.125]

    Электронное возбуждение полимерной сетки может быть вызвано электромагнитным излучением (свет, ультрафиолетовое излучение, -излучение) или облучением частицами. Для передачи энергии соударения частиц или кванта излучения электрону необходимо, чтобы энергия оказалась достаточной для перехода последнего в возбужденное состояние н чтобы существовал механизм взаимодействия. При облучении светом в видимой части спектра фотон, скажем, длиной волны 330 нм обладает достаточной энергией для разрыва С—С-связи.. Однако фотон не будет поглощаться алканами, и в них нет электронных состояний с такой же или меньшей энергией возбуждения. Для эффективного разрыва связей фотон должен поглощаться и взаимодействовать с электроном связи. Подобное взаимодействие происходит либо непосредственно, либо косвенно с помощью механизмов переноса энергии путем диффузии экситона, одноступенчатой передачи или поглощения флюоресцентного света, испускаемого той же самой или другой (примесной) молекулой [11]. Природа и последовательность этих важных процессов, которые определяют фотохимическую стабильность (или нестабильность) полимеров, не будут здесь подробно рассматриваться. Интересно, однако, определить уровни энергии, на которых начинается возбуждение электронов или ионизация молекул, и изменения энергии связи, вызванные в свою очередь возбуждением или ионизацией. [c.109]

    Фотохимическая деградация, по-видимому, является наиболее важным фактором внешних условий. В монографиях [196—203, 207—209] детально рассматриваются основные процессы поглощения фотона, возбуждения электрона, передачи энергии через экситоны, люминесценция, фосфоресценция и безызлучательные переходы, разрыв цепей и образование свободных радикалов, вторичные реакции, стабилизация и защита материала. [c.319]

    Емин, рис. 40). При этом электрон не покидает того атомного остова, с которым связан, и данную атомную систему рассматривают как экситон — возбужденное состояние атома. Минимальная энергия [c.121]


    ЭКСИТОННЫЯ участок 2- чая его экситонную часть (рис. 41). За- [c.122]

    По зонной теории (см. ниже) экситон — связанное состояние двух квазичастиц — электрона и дырки. Экситон не может быть квалифицирован как локализованная квазичастица или как коллективное возбуждение. [c.77]

    Как известно [5], основное состояние ферромагнетика соответствует тому, что элементарные магнитные моменты (спины) всех атомов решетки одинаково ориентированы, образуя общий магнитный момент участка (домена) ферромагнетика. Состояние магнитного возбуждения связано с полным переворачиванием отдельного момента (спина) относительно всех остальных. Однако, как и в случае экситона, такое локализованное состояние возбуждения в системе одинаковых взаимодействующих атомов является неустойчивым, и роль элементарных возбуждений играют волны переворачивания магнитных моментов (спиновые волны), при которых состояние возбуждения как бы переходит последовательно от одного атомного слоя к другому. [c.78]

    Итак, мы рассмотрели кратко всего шесть типов квазичастиц. Из них две — плазмон и экситон — оказались сложными квазичастицами. Таким образом, простые квазичастицы (фонон, электрон, дырка и т. д.), как и обычные частицы, могут быть строительным материалом для более сложных образований. [c.78]

    Поглощение излучения в чистых полупроводниках может быть связано с изменением энергетического состояния свободных или связанных электронов. В связи с этим в чистых полупроводниках различают три основных типа поглощения 1) поглощение свободными носителями — поглощение, возникающее вследствие ускорения свободных носителей осциллирующим электромагнитным полем 2) собственное (фундаментальное) поглощение — поглощение, обусловленное возбуждением электронов из валентной зоны в зону проводимости (фундаментальное или собственное поглощение) 3) экситонное поглощение (поглощение, обусловленное возбуждением электронов из валентной зоны) в связанные состояния электрона с дыркой — экситоны. [c.415]

    При прямом переходе волновые векторы рождающихся электрона и дырки кц и кр) должны быть равны по величине и противоположно направлены. Но если электрон и дырка находятся в связанном состоянии, они должны двигаться вместе в одном направлении, а не в противоположных. Два эти условия могут быть соблюдены, если кп = кр = 0. Поэтому энергия образовавшегося экситона строго дискретна, и мы получаем линейчатый спектр экситонного поглощения. При этом имеется конечная вероятность [c.422]

    Экситоны могут образовываться также в результате непрямых переходов с поглощением или испусканием фононов. В этом случае [c.422]

    Хотя теперь нельзя предполагать наличие пика поглощения, тем не менее процесс непрямого экситонного поглощения проявится в резком возрастании т]экс- Такая припухлость в области непрямого поглощения ясно видна на кривой, приведенной на рис. 173, а [интервал А (йсо) выделен пунктиром]. [c.423]

    Спонтанная люминесценция включает переход (излучательный, а чаще безызлучательный) на энергетический уровень, с которого происходит излучение (рис. 180, б). Этот вид люминесценции характерен для сложных молекул в парах и растворах и для примесных центров в твердых телах (см. гл. V). Особый случай представляет люминесценция, обусловленная переходами из экситонных состояний (см. рис. 175, а). [c.432]

    У сложных пленок (чередующееся напыление) тоже наблюдается некоторое увеличение Т по сравнению с Тс отдельных сверхпроводящих слоев, образующих композицию [5]. Это связывают с действием барьерного механизма Коэна—Дугласа или с действием экситонного механизма В. Л. Гинзбурга. Однако, вероятнее всего, рост Тс указанных выше слоистых пленок связан со структурной неупорядоченностью в тонких пленках, полученных конденсацией на охлажденную подложку. [c.497]

    По фотоэлектронному спектру Is линии углерода с участком спектра, соответствующего спектру характеристических потерь энергии электронов (потери в области энергий до 40eV) можно определить энергии возбуждения коллективных (плазменных) колебаний и одночастичных (межзонных и экситонных) переходов. Используя преобразование Крамерса-Кронига можно выделить из функции потерь спектр одночастичных возбуждений, который является комбинированной плотностью состояний (свертка валентной зоны с зоной проводимости). Спектр одночастичных возбуждений в линейно-цепочечном углероде имеет узкий пик экситонного поглощения, интенсивность которого напрямую связана с качеством кристалла (с отсутствием межцепочечных сшивок). [c.202]

    Эффект передачи энергии должен зависеть от природы носителя. Так, при использовании металлического кадмия в качестве носителя активность ансамбля платины при разложении перекиси водорода примерно в 10 раз превышает его активность на других носителях. Это позволяет считать, что возможен подбор носителей с повышенной рекуперацией и энергопроводимостью по экситонному или другому механизму. Следует считаться по меньшей мере с дву- [c.122]

    На еще больших расстояниях возможны переходы в кристаллах, твердых растворах и некоторых жидкостях за счет миграции экситона, при этом наблюдается зависимость типа 1/г . Понятие экситона было введено Френкелем при интерпретации некоторых спектров кристаллов в этом случае пара электрон — дырка рассматривается как некая частица, которая может перемещаться по кристаллу в результате взаимодействий узлов решетки. Для наших целей можно принять электронновозбужденную облучаемую частицу за экситои, блуждающий по значительному числу узлов решетки. Далее мы не будем обсуждать этот механизм. [c.121]


    Элементарное возбуждение в этом случае называют эксито-ном [4]. Экситоны реализуются в полупроводниковых и диэлектрических (молекулярных) кристаллах и, подобно плазмонам, подчиняются статистике Бозе—Эйнштейна. [c.77]

    Различают два основных типа экситонов, соответствующие двум крайним случаям связи электрона и дырки экситон Ванье и экситон Френкеля. [c.77]

    Экситон Ванье — сравнительно слабо связанное образование, электрон и дырка находятся на различных узлах решетки, причем расстояние между электроном и дыркой считается большим по сравнению с постоянной кристаллической решетки. [c.77]

    Экситон Френкеля можно представить как предельный случай экситона Ванье, когда связанные электрон и дырка находятся на одном и том же узле. Экситон реализуется в молекулярных кристаллах, в которых связь внутри молекулы (ковалентная) значительно сильнее, чем связь между молекулами (ван- [c.77]

    Дер-ваальсова). Экситоны Ванье чаще всего наблюдаются в Полупроводниках. [c.78]

    Помимо рассеяния фононов на фононах, фононы могут рассеиваться в диэлектриках на других квазичастицах (экситонах, магнонах) точечных дефектах (примесных атомах, вакансиях и их комплексах) линейных дефектах (дислокациях) границах зерен в поликристаллах на случайном распределении изотопов данного химического элемента и т. д. Процесс переноса тепла, естественно, усложняется, что проявляется в усложнении зависимости коэффициента теплопроводности от температуры. Теоретическая оценка вкладов в полное теплосопротивление w = 1/к, вносимых перечисленными механизмами, очень сложна [7] и весьма приближенна. [c.155]

    Возбуждение электрона в зону проводимости, отвечающее полной ионизации, приводит к возникновению свободных электрона и дырки, способных независимо двигаться под действием приложенного поля. Существует и другая возбужденная конфигурация (экситон — см. главы П, V) с более низкой энергией, с которой электрон и дырка движутся как связанные нейтральные образования. Экситон Френкеля (см. гл. II) совершенно аналогичен позитронию (связанной позитрон-электронной паре) и энергетические уровни этого экситона, так же как и позитрония, задаются боровской моделью атома водорода с заменой массы свободного электрона на приведенную массу т . Далее, так как экситон существует в кристалле, а не в вакууме, кулоновское взаимодействие ослабляется за счет диэлектрической проницаемости. Поэтому энергетический спектр экситона (рис. 174) задается выражением [8, 41 [c.421]

    Различают три типа перехвдов межзонного поглощения прямые, непрямые и экситонные. [c.430]

    Экситонное поглощение. При определенных условиях экситоны тоже должны давать вклад в коэффициент поглощения (пропускания), который при высоком разрешении используемых приборов можно выделить. Так, тщательные измерения показали, что первая (пунктирная) ступенька на кривой рис. 178 представляет србой 430 [c.430]

    По идее В. Л. Гинзбурга [13], в слоистых структурах ( сэндвичах ) должен действовать экситонный механизм сверхпроводимости, который сможет обеспечить высокие Т ( 10 К и выше). Изготовить сэндвич с благоприятными параметрами в контролируемых условиях пока не удалось. По чисто техническим причинам действительно очень трудно получить совершенный ультра-тонкий металлический слой ( 2—3 атомных слоя) на диэлектрической или полупроводниковой подложке. Но если, например, на предварительно окисленную кремниевую подложку напылить тонкий слой селена, то последующее напыление металла позво-" ляет получить достаточно однородные ультратонкие слои. Следовательно, создание подходящих сэндвичей хотя технически и очень трудная, но вполне разрешимая задача. Для ее осуществле-ния необходимы <очень чистые условия (сверхвысокий вакуум, сверхчистые вещества, очень совершенные подложки). [c.506]

    Эволюция локализованных возбуждений. Дальнейшая судьба образовавшихся радикалов и экситонов также во многом определяется исходной геометрией аниона, симметрией местоположения, степенью орбитального вырождения, природой центрального атома аниона. Если орбиталь, занимаемая неспаренным электроном, вырождена, то эффект Яна-Теллера приводит к искажению ядерной конфигурации вплоть до диссоциации. Устойчивость к диссоциации определяется химической природой радикала. Для координационно-насыщенных соединений наблюдается разрыв связи, а для ненасыщенных - нет. При локализации экситона наблюдаются аналогичные вибронные эффекты. Энергия возбуждений анионов заведомо превышает энергию разрыва любой из химических связей внутри многоатомного аниона. Прямая диссоциация синглетных возбуждений кислородсодержащих анионов с образованием атомарного или молекулярного кислорода запрещена правилом сохранения мультиплетности, в связи с чем она протекает через образование комплексов с переносом заряда типа [ХОп-т От]. Экспериментально такие комгшексы обнаружены в нитратах, хлоратах и перхлоратах. Первоначально при диссоциации происходит селективный разрыв наиболее длинной связи (даже при разности длин связей менее 1%), что экспериментально подтверждено для нитратов щелочных металлов, хлората калия, перхлората бария. [c.98]


Библиография для Экситон: [c.534]   
Смотреть страницы где упоминается термин Экситон: [c.182]    [c.30]    [c.34]    [c.121]    [c.121]    [c.121]    [c.123]    [c.130]    [c.77]    [c.246]    [c.421]    [c.422]    [c.422]    [c.422]    [c.431]    [c.98]   
Биофизика (1988) -- [ c.143 ]

Кинетика и катализ (1963) -- [ c.246 ]

Основы биохимии Т 1,2,3 (1985) -- [ c.693 ]

Химическая кинетика и катализ 1974 (1974) -- [ c.333 ]

Химическая кинетика и катализ 1985 (1985) -- [ c.342 , c.465 ]

Введение в физическую химию и кристаллохимию полупроводников (1968) -- [ c.375 ]

Введение в физическую химию и кристаллохимию полупроводников Издание 2 (1973) -- [ c.542 ]

Основы общей химии Том 3 (1970) -- [ c.53 ]

Проблемы физики и химии твердого состояния органических соединений (1968) -- [ c.0 ]

Биофизика Т.1 (1997) -- [ c.365 , c.404 ]

Биофизика Т.2 (1998) -- [ c.297 , c.303 ]




ПОИСК







© 2025 chem21.info Реклама на сайте