Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диспергирование теория

    При вероятностно-статистическом моделировании получения дисперсных систем во фрикционных потоках и при кавитационно-акустическом воздействии активно используется понятие инфинитезимальных интенсивностей, под которыми в теории случайных процессов понимаются мгновенные локальные параметры данных процессов. При получении дисперсных систем инфинитезимальные интенсивности играют роль кинетических параметров процессов образования дискретных компонентов системы (диспергирование, генерация кавитационных пузырьков) и процессов их уменьшения (агрегирование частиц и разрушение пузырьков). [c.131]


    Носители (трегеры) — пористые термостойкие каталитически неактивные или малоактивные материалы, на которые осаждением, пропитыванием или другими методами наносят катализатор. При этом достигается тонкое диспергирование катализатора, экономия дорогих металлов, создаются большие удельные поверхности при размерах пор, близких к оптимальным, увеличивается термостойкость. Носитель может взаимодействовать с собственно-каталитическим веществом, повышая его активность. Химическое участие носителя в катализе пытаются объяснить, используя теорию поля лигандов [26—29]. [c.62]

    О влиянии высоты слоя на однородность псевдоожижения в литературе высказываются противоречивые мнения [18]. В то же время показано [21], что увеличение диаметра аппарата повышает однородность псевдоожиженного слоя при хорошем газораспределении. Наилучшее качество псевдоожижения достигается [21] при использовании устройств, обеспечивающих тонкое диспергирование и равномерное распределение газового потока. Для ориентировочной оценки однородности псевдоожижения можно использовать формулу, базирующуюся на положениях двухфазной теории [16]  [c.171]

    Предположение, что пропан коагулирует диспергированные в его растворе вещества [14], может быть применено к асфальтенам, которые, как известно [2], по свойствам приближаются к коллоидным веществам. Однако это никак но может относиться к смолам и тем более к углеводородам масел, которые хотя и могут ассоциироваться, но никак не могут относиться к веществам, образующим коллоидную структуру. Н. Ф. Богданов [21] показал, что коагуляцией процесс нё может быть объяснен, так как ряд наблюдаемых в нем явлений находится в противоречии с выводами, следующими из теории коагуляции Интересующихся этим вопросом мы отсылаем к опубликованной работе Богданова. В дальнейшем Богданов провел исследования, доказавшие, что деасфальтизации остатков нефти пропаном объясняется растворяющей способностью его различных компонентов обрабатываемого сырья [22]. [c.174]

    Слабое эмульгирование может быть получено с любым ПАВ, т. е. с любым соединением, которое понижает поверхностное натяжение между двумя жидкостями. Последнее связано с адсорбцией ПАВ на межфазной поверхности и влияет как на легкость диспергирования при получении эмульсии, так и на скорость разрушения жидкой пленки между каплями. Согласно некоторым взглядам, существенным фактором стабилизации является эластичность пленки. Ниже изложена хорошо известная теория этого явления Марангони и Гиббса .  [c.84]

    Клаус, развивая теорию Банкрофта, указал на то, что образование даже весьма нестойких эмульсий, за исключением чрезвычайно разбавленных, связано с наличием в системе третьего вещества, которое, адсорбируясь на поверхности раздела двух жидких фаз, образует защитную оболочку вокруг диспергированных шариков, будь то масляные или водные. Диспергирующие и стабилизирующие свойства этой оболочки могут быть приписаны в разной степени  [c.16]


    В рассмотренных выше закономерностях коэффициент диффузии О является единственным параметром, который зависит от природы диспергированного вещества и дисперсионной среды. В соответствии с (3.2) этот параметр измеряется в единицах см /с. Диффузия — медленный процесс, поэтому и величина О мала. Самые высокие значения О достигаются при диффузии в газах, где молекулы обладают наибольшей подвижностью. Кинетическая теория газов дает следующее выражение для коэффициента диффузии молекул газа  [c.41]

    Современная коллоидная химия включает следующие основные разде.ты 1) молекулярно-кинетические явления (броуновское движение, диффузия) в дисперсных системах гидродинамика дисперсных систем дисперсионный анализ 2) поверхностные явления адсорбция (термодинамика и кинетика), смачивание, адгезия, поверхностно-химические процессы в дисперсных системах строение и свойства поверхностных (адсорбционных) слоев 3) теория возникновения новой (дисперсной) фазы в метастабильной (пересыщенной) среде конденсационные методы образования дисперсных систем 4) теория устойчивости, коагуляции и стабилизации коллоидно-дисперсных систем строение частиц дисперсной фазы (мицелл) 5) физико-химическая механика дисперсных систем, включающая теорию механического диспергирования, явления адсорбционного понижения прочности твердых тел, реологию дисперсных систем образование и механические свойства пространственных структур в дисперсных системах 6) электрические и электрокинетические явления в дисперсных системах 7) оптические явления в дисперсных системах (коллоидная оптика)—светорассеяние, светопоглощение коллоидная химия фотографических процессов. [c.281]

    Молекулярная теория находит подтверждение в ряде фактов и наблюдений. Во-первых, определение молекулярных весов в раа-бавленных растворах полимеров методами, прямо указывающими молекулярный вес частиц (например, методом светорассеяния), однозначно показало отсутствие в таких растворах мицелл, т. е. частиц, состоящих из агрегатов молекул. Во-вторых, растворение высокомолекулярного вещества, как и растворение низкомолекулярных соединений, идет самопроизвольно, часто с выделением тепла. Например, достаточно желатин внести в воду, а каучук в бензол, чтобы через некоторое время без какого-либо вмешательства извне образовался раствор полимера в растворителе. При диспергировании же вещества до коллоидного состояния, как известно, требуется затрата энергии на преодоление межмолекулярных сил. В-третьих, растворы полимеров термодинамически устойчивы и при соответствующих предосторожностях могут храниться сколь угодно долго. Коллоидные растворы, наоборот, термодинамически неустойчивы и способны стареть. Это объясняется тем, что при растворении полимеров всегда образуется гомогенная система и свободная энергия уменьшается, как, и при получении растворов низкомолекулярных веществ, либо за счет выделения тепла в результате взаимодействия полимера с растворителем, либо за счет увеличения энтропии. При получении же гетерогенной коллоидной системы ее свободная энергия всегда возрастает в результате увеличения поверхности дисперсной фазы. В-четвертых, растворение высокомолекулярных соединений не требует присутствия в системе специального стабилизатора. Лиофобные же золи не могут быть получены без специального стабилизатора, придающего системе агрегативную устойчивость. Наконец, растворы полимеров находятся в термодинамическом равновесии и являются обратимыми системами к ним приложимо известное правило фаз Гиббса. [c.434]

    По разделу физико-химической механики, в котором рассматривается диспергирование твердых тел, проведены исследования процессов деформации и разрушения при механической обработке давлением, измельчением и резанием. Основные работы по теории и практическому применению адсорбционного эффекта понижения прочности и облегчения деформации твердых тел выполнены П. А. Ребиндером, В. И. Лихтманом, Г. В. Карпенко и Е. Д. Щукиным. [c.10]

    П. А. Ребиндер разработал теорию твердения цемента с позиций физико-химической механики, рассматривая процессы схватывания и твердения как развивающуюся во времени совокупность процессов гидратации, самостоятельного диспергирования частот вяжущего, образования тиксотропных коагуляционных структур и создания на их основе кристаллизационной структуры гидратных новообразований путем кристаллизации через раствор . В дальнейшем самопроизвольное диспергирование в указанной схеме было заменено растворением до образования пересыщенного по отношению к новообразованиям раствора. Ребиндер объясняет упрочнение структуры развитием кристаллизационных контактов. При образовании контактов срастания кристаллических фаз прочность структуры увеличивается, причем необходимым условием является обязательное обрастание контактов достаточно толстым слоем новообразований. Е. Е. Сегалова показала, что обрастание кристаллов приводит к увеличению прочности и в то же время к развитию внутренних напряжений, обусловливаемых ростом кристаллических контактов. Поэтому конечная прочность структуры зависит от вклада каждого из этих факторов. [c.340]


    Однако уже в начале XX в. в весьма сложной и типично коллоидной проблеме устойчивости Смолуховской с большим успехом ввел представление о бимолекулярной реакции, характерной для гомогенных истинных растворов. Учет специфики заключался в охвате общей формой типично коллоидного содержания — образования не только двойников, но и более сложных агрегатов . Это — лишь один из этапов скрытого развития растворной теории, которая в явном виде и на качественно ином уровне предстает теперь в рассмотренных представлениях об агрегативной устойчивости и самопроизвольном диспергировании. Специфика коллоидного состояния проявляется здесь не только в резком отличии (от молекулярных растворов) значений энергетических параметров, но и в использовании кривых потенциальной энергии, базирующихся на электроповерхностных свойствах. Несомненно, что дальнейшая разработка идеи общности коллоидных и молекулярных растворов с учетом специфики дисперсных систем окажется плодотворной как для коллоидной, так и для физической химии. [c.265]

    Любую коллоидную частицу можно представить состоящей из одного гигантского полииона и множества противоионов. Поэтому любой золь (если он не находится в изоэлектрическом состоянии) является коллоидным электролитом. Действительно, свойства золей непрерывно переходят в свойства растворов электролитов, например электрофорез — в электромиграцию (движение ионов в электрическом поле). Двойной электрический слой в процессе предельного диспергирования превращается в ионную атмосферу, характеризующуюся теми же основными закономерностями трактовка Гуи переходит при этом в представления теории сильных электролитов Дебая — Хюккеля. С такими проявлениями глубокой общности свойств коллоидных и гомогенных растворов мы уже встречались. [c.321]

    Рассмотренная схема отражает длительный исторический спор о природе растворов (конец XIX в.— начало XX в.) между сторонниками суспензионной теории, считавшими коллоидные растворы принципиально отличными от истинных , н сторонниками растворной теории, отрицавшими такое различие. Спор разрешен не был, хотя чаша весов склонилась в пользу суспензионной теории (в связи с высокой лабильностью дисперсных систем). Действительно, оба способа трактовки равноправны, однако наиболее существенным является появление в процессе диспергирования нового качества, новой степени свободы в системе. [c.71]

    Данная глава касается преимущественно образования лиофобных дисперсных систем при этом предполагается, что их стабилизация тем или иным путем обеспечена. Наряду с изложением основ термодинамики дисперсных систем наибольшее внимание здесь уделено теории конденсационного образования таких систем в процессах выделения новой фазы из исходной метастабильной системы. Основные закономерности диспергирования рассматриваются преимущественно в заключительной гл. XI, посвященной физико-химической механике. [c.112]

    При. исследовании струйного охлаждения рассматривается система, состоящая из трех основных элементов жидкой фазы, диспергированной - или в виде сплощной-струи, газовой фазы и твердого тела с охлаждаемой поверхностью. В рамках широко применяемого в теории теплообмена и гидромеханики феноменологического метода предполагается, что состояние среды является определенным, если заданы поля температуры Т х, у, г, т), скорости [c.5]

    Современная теория измельчения рассматривает процесс диспергирования как чрезвычайно сложное явление, в котором на изменение технологических свойств обрабатываемых материалов решающее влияние оказывают два основных фактора — механический и физико-химический. [c.34]

    Разработаны основы теории диспергирования в АГВ на основе концепции зонного разрушения, учитывающей особенности силового воздействия в зонах стесненного удара, высоких сдвиговых напряжений и в облаке кавитационных пузырьков  [c.5]

    Лично автор склонен думать, что эта теория имеет наибольший интерес в случае процессов жидкостной экстракции, сопровождающихся химической реакцией [16]. Действительно, когда приведены в контакт две жидкости, то более вязкая жидкость (или жидкость, диспергированная в виде очень мелких капель) ведет себя как твердое тело в том смысле, что относительное движение двух фаз происходит полностью или главным образом за счет высоких градиентов скорости в менее вязкой фазе, вблизи границы раздела фаз. Если реакция протекает в менее вязкой фазе, то процесс близок по условиям, допущенным в упомянутой выше теории. В качестве примера можно привести алкилирование сжиженного нефтяного газа в сернокислотных реакциях [17]. В работе Ритема и Мееринка [16] представлена довольно полная обработка экстракции жидкость — жидкость с химической реакцией. [c.116]

    Более сложной представляется модель кавитационно-акусти-ческого диспергирования, так как она должна учитывать состояние двух множеств частиц внутренней фазы дисперсии и совокупности кавитационных пузырьков. В основу предлагаемого математического описания положены элементы математической теории эволюции и, в частности, теории взаимодействия двух конкурирующих популящй М[ — популяции частиц внут- [c.104]

    Теория многостадийного действия аитидетонационных присадок отводит соответствующие роли и металлу, и связанному с ним органическому радикалу. Эффективность действия антидетонационной присадки зависит от следующих условий [20] своевременного разложения антидетонатора в условиях двигателя — в фазе, соответствующей преддетонационным процессам образования радикалов, способных тормозить предпламенные процессы и снижать. концентрацию пероксидов выделения свободного металла в достаточно диспергированном состоянии, чтобы на его поверхности эффективно происходила рекомбинация атомов и радикалов, приводящих к горячему взрыву. [c.171]

    В теории поляризации специфические свойства поверхности не рассматриваются, в то время как в большинстве случаев на границе раздела фаз образуется поверхностный слой со свойствами, отличающимися от объемных. Например, диспергированные в неполярной среде капельки или частицы обладают электрическим зарядом, который возникает благодаря различным физико-химическим процессам. Анализ явлений в области сильной поляризации затруднен тем, что в диэлектрических системах одновременно может происходить несколько процессов, имеющих различную природу (электрофорез, дизлектрофорез и др.). В связи с этим оценку роли каждого фактора проводят, как правило, на модельных системах. [c.21]

    Весь материал разделен на пять глав принципы получения эмульсий, стабильность эмульсий, общие свойства, реология, электрические и диэлектрические свойства. Последние две главы отчасти перекрывают друг друга в том смысле, что электрические и диэлектрические свойства могут быть использованы для изучения структуры коагулированных эмульсий. Новые достижения, описанные в последней главе, могут быть использованы для изучения мембран на поверхности раздела фаз. В главе о стабильности эмульсий рассмотрены вопросы, связанные с изменениями при хранении их в нормальных условиях, а также описаны теории тонких жидких пленок, поверхностной вязкости и т. д. Стабильность прп низких или высоких температурах и при центрифугировании обсуждается в главе HI, так как установлено, что механизмы коалесценции капель иные. В кнпге изложены лишь общие принципы диспергирования, без подробного описания промышленных диспергаторов. Наконец, медленные процессы объяснены па основе структуры эмульсий вместо чисто феноменологических описаний, часто применяемых в реологии. [c.8]

    Особенно интересные наблюдения проведены на эмульсиях со значениями и-потенциала 20 мвили —20 мв. Обнаружено почти постоянное соотношение одиночных и двойных капель, что указывает на обратимое равновесие между флокуляцией п диспергированием. Авторы считают, что этп результаты соответствуют теории ДЛВО. Для капель диаметром 2 мкм п -ф 20 мв энергетический барьер должен быть таким высоким, чтобы предотвратить соприкосновение, а вторичный минимум — неглубоким ( —8 кГ), чтобы вызвать обратимую агрегацию (см. рис. П.З). Кроме того, установлено, что соотношение дуплетов увеличивалось примерно на вычисленную величину нри изменении -потенциала от —20 до —23 мв. [c.116]

    B. Д. Mop, Теория смешения и диспергирования, в кн. Переработка термопластичных материалов, под ред. Э. Бернхардта, пер, с англ., Госхилшздат, М,, 1962, гл, 3. [c.220]

    Однако уже в начале XX в. в весьма сложной и типично коллоидной проблеме устойчивости Смолуховский с большим успехом ввел представление о бимолекулярной реакции, характерной для гомогенных истинных растворов. Учет специфики заключался в охвате общей формой типично коллоидного содержания — образования не только двойников, но и более сложных агрегатов . Это — лишь один из этапов скрытого развития растворной теории, которая в явном виде и на качественно ином уровне предстает теперь в рассмотренных представлениях об агрегативной устойчивости и самопроизвольном диспергировании. Специфика коллоидного состояния проявляется здесь не только в резком отличин (от молекулярных растворов) значений энергетических параметров. [c.254]

    Кутепов А.М., Падохин В.А., Бондарева Т.И. Стохастическая теория процессов диспергирования гетерогенных систем. Сб. науч. тр. Проблемы химии растворов и технологии жидкофазных материалов , г. Иваново, 2001. - с. 189 - 202. [c.39]

    Теория наполнителей объясняет слипание частиц тем, что на их поверхностях образуются адсорбцнонно уплотненные слои жидкости, которые обладают упругостью формы и предельным напряжением сдвига. В общем случае связующим служит не чистая жидкость, а ее смесь с диспергированными в ней мелкими частицами. Такая смесь сообщает связность и крупнозернистым наполнителям. Для связующих битумов важную роль играет температурный коэффициент вязкости, который составляет значительную величину, вследствие чего напряжения сдвига и растяжения сильно увеличиваются при охлаждении. [c.146]

    Далее, в соответствии с теорией Бабаляна Г. А., отмьггые от твердой поверхности пленки нефти продвигаются по пласту под действием приложенного градиента давления. В этом случае скорость вытеснения определяется только размерами капли. Чем меньше ее диаметр, тем с большей скоростью она перемещается в норовом пространстве и, в соответствии с этим, тем меньше скорость проскальзывания воды относительно капли и, следовательно, расход воды на вытеснение одного и того же количества диспергированной нефти. [c.37]

    В обзорных работах по моделям многофазной фильтрации отмечается, что насыщенность является единственным аргументом в функциях фазовых проницаемостей, и движение одной фазы не оказывает существенного влияния на движение другой при капиллярных числах, обычных при заводнении нефтяных пластов, а для процессов довытеснения остаточной нефти обычная теория двухфазной фильтрации перестает работать, и центральным элементом механики двухфазного течения при высоких капиллярных числах является движение отдельных кластеров вытесняемой жидкости в потоке вытесняющей, причем препятствием для развития соответствующей модели является учет диспергирования и коалесценции кластеров вытесняемой фазы [8]. [c.28]

    При г. газифицирующихся конденсированных систем (напр., твердых и жидких ВВ) происходит интенсивное газовыделение вследствие испарения горючего или его хим. разложения, обусловленных потоком тепла из зоны г. Ведущая Г. экзотермич. р-ция может протекать в образующейся газовой фазе (т. наз. летучие системы) либо в конденсиров. фазе (нелетучие системы) Стационарное Г. летучих систем описывается той же теорией, что и Г. газовых смесей с заранее перемешанными компонентами. В нелетучих системах выделение большого кол-ва газообразных продуктов может приводить к мех. разрушению и диспергированию в-ва вблизи пов-сти. В результате зона р-ции сильно растягивается и тепловыделение происходит в осн. в мелкодисперсной смеси частиц горючего и продуктов его первичного хим. разложения. Линейные скорости и [c.597]

    Полной теории М. д. пока ие существует. М. д. обусловлено комплексом коллоидно-хим. процессов и поверхностных явлений, включающим смачивание, диспергирование загрязнений, стабшшзадию образовавщейся дисперсии, мицеллообразование ПАВ в объеме моющей жидкости, солюбилизацию загрязнений, пенообразование, фазовые превращения и др. Считается, что начальная стадия всякого Н. д,.-смачивание загрязненной пов-сти моющей жидкостью. Присутствие в моющей жидкости определенных ПАВ в случае масляных загрязнений резко изменяет условия избират. смачивания. Еелн межфазные натяжения на границах раздела твердое тело-масло, масло- ода и твердое тело-вода еоотв, о , Оми и Отв, то условие избират. смачивания водной средой определяется соотношением  [c.146]

    Термин многоканальный (мультиплексный) заимствован из теории связи, где он означает систему передачи многих потоков информации одновременно по одному каналу. Многоканальные спектрометры привлекательны своей способностью использовать энергию ИК-излучения гораздо эффективнее, чем более распространенные спектрометры с последовательным (по времени) диспергированием. Выигрыш у многоканальных спектрометров или выигрыш Фелжетта [24] обусловлен тем, что длины всех волн измеряются одновременно, т. е. отсутствует выходная щель (которая задерживает приблизительно 99,9% излучения). Преимущество многоканального спектрометра можно количественно оценить и с другой точки зрения. В экспериментальном измерении, характеризующемся случайным шумом, отношение сигнал/шум можно повысить, повторяя измерения N раз. Полезный сигнал будет увеличиваться пропорционально числу измерений М, но шум, частично усредняясь, возрастет только в /м раз. Таким образом, выигрыш [c.34]


Смотреть страницы где упоминается термин Диспергирование теория: [c.98]    [c.91]    [c.246]    [c.78]    [c.221]    [c.265]    [c.451]    [c.452]   
Переработка каучуков и резиновых смесей (1980) -- [ c.107 , c.137 ]

Переработка термопластичных материалов (1962) -- [ c.131 , c.457 ]




ПОИСК





Смотрите так же термины и статьи:

Диспергирование



© 2025 chem21.info Реклама на сайте