Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смешение теория

    Предлагаемая читателю монография представляет восьмую книгу в единой серии работ авторов под общим названием Системный анализ процессов химической технологии , выпускаемых издательством Наука с 1976 г. Семь предыдущих монографий 1. Основы стратегии, 1976 г. 2. Топологический принцип формализации, 1979 г. 3. Статистические методы идентификации объектов химической технологии, 1982 г. 4. Процессы массовой кристаллизации из растворов и газовой фазы, 1983 г. 5. Процессы измельчения и смешения сыпучих материалов, 1985 г. 6. Применение метода нечетких множеств, 1986 г. 7. Энтропийный и вариационный методы неравновесной термодинамики в задачах анализа химических и биохимических систем, 1987 г.) посвящены отдельным вопросам теории системного анализа химико-технологических процессов и его практического применения для решения конкретных задач моделирования, расчета, проектирования и оптимизации технологических процессов, протекающих в гетерогенных средах в условиях сложной неоднородной гидродинамической обстановки. [c.3]


    При растворении полимеров в низкомолекулярных жидкостях энтальпия смешения АН в большинстве случаев мала в случае эластомеров она, как правило, положительна. Хорошая растворимость полимеров в большом числе растворителей обусловлена необычайно высокими значениями энтропии смешения. Именно с последним обстоятельством связаны и отклонения свойств растворов полимеров от свойств идеальных растворов. Теория растворов полимеров [2—5] позволила рассчитать энтропию смешения полимера с растворителем исходя из определения числа способов, которыми могут разместиться молекулы растворителя среди связанных в длинные гибкие цепи сегментов макромолекул (конфигурационную энтропию смешения). Несмотря на ряд существенных приближений используемой модели, полученные с ее помощью уравнения свободной энергии смешения и, соответственно, парциальных мольных свободных энергий компонентов системы (химических потенциалов полимера н растворителя) позволили объяснить важнейшие особенности поведения растворов полимеров. [c.33]

    В книге излагаются основы исследования устойчивости режимов работы химических реакторов идеального смешения. Описывается процедура составления математических моделей реакторов. Для исследования устойчивости в малом и в большом используются методы качественной теории дифференциальных уравнений и методы Ляпунова. Применение различных методов иллюстрируется конкретными примерами. [c.4]

    Термодинамика полимерных растворов теория смешения - теория Флори — свободная энергия и энтальпия смешения — парциальные мольные величины - исключенный объем. [c.378]

    Вопросы расчета реакторов идеального смешения излагаются во всех общих монографиях по теории химических реакторов, указанных в библиографии к главе 1. Ниже приводится литература по отдельным частным вопросам. [c.212]

    Раздел VII.4. Основополагающие ранние работы по теории устойчивости реакторов идеального смешения  [c.212]

    К такому виду зависимости Вк приводят и различные модели, например, при замене зернистого слоя рядом последовательно соединенных ячеек полного смешения 9] масштабы которых см пропорциональны ёз. По расчетам Ранца [10] для поперечного тепло- и массопереноса при ромбоэдрической упаковке шаров Во = 0,089. Для продольного конвекционного переноса при больших числах Рейнольдса в работе [11 получено Во = 0,5. Такое же значение получено в работе [12] с использованием выводов статистической теории турбулентности. [c.89]


    Известен ряд эвристических правил для построения схем разделения [1161 и теплообменных систем [1171. Итак, даже при построении реакторной схемы мы сталкиваемся с необходимостью выбора наилучшей схемы из большого числа различных вариантов. Так, реакцию можно проводить в реакторах смешения или вытеснения либо в их комбинации, может варьироваться их число, употребляться или не употребляться рецикл, возможны различные схемы теплообмена исходного потока с промежуточными и выходными потоками реакторного узла. Выбор одного из огромного числа вариантов основывался на интуиции проектировщика. Теперь же ставится задача поручить эту творческую работу (или хотя бы ее часть) электронной вычислительной машине. Другими словами, ставится задача создания теории построения (синтеза) ХТС [1161, [118], [119]. При этом возможны два пути. Первый путь — формализация того способа мышления, которым пользуется человек при создании новых схем, формализация существующих эвристических правил, создание новых, а также разработка методов использования этих правил, приоритета одних перед другими, и т. д. Второй путь — полностью алгоритмический подход, состоящий в том, чтобы сформулировать проблему синтеза как математическую и развить математические методы ее решения. Не давая окончательного ответа на вопрос, какой путь лучше, приведем пример совсем из другой области. Многовековая эволюция живого мира привела к способу передвижения живых существ с помощью ног. Многочисленные изобретения средств [c.188]

    С помощью зависимости (6-25) можно объяснить физический смысл коэффициента проводимости Н. В случае турбулентного потока появляется, как уже было сказано, нерегулярный вихревой поток макроскопических неустановившихся скоплений частиц. Нерегулярное движение этих молекул жидкости подобно описываемому в кинетической теории газов движению отдельных молекул, а это значит, что частицы жидкости движутся вдоль характерного пути пробега V, называемого путем смешения. Путь смешения играет в этом случае ту же роль, что средняя длина свободного пробега молекул газа. Второй характерной для турбулентного потока величиной является среднее колебание скорости (и). В соответствии с уравнением (6-25) значение Н будет представляться произведением двух величин  [c.65]

    Для условий некоторых опытов из числа показанных на рис. У-26, а—е теория поршневого режима дает несколько заниженные значения с — в отличие от расчетных для реакторов диаметром 50 и 100 мм (рис. У-24—У-25). При расчетах принимали, что в процессе коалесценции газовых пробок происходит полное смешение, конверсия возрастает от участка к участку, и на [c.213]

    Из теории реакторов известно, что число ячеек идеального смешения, заменяющих реальный аппарат, т = 1/5 , где 5 — безразмерная дисперсия распределения времени пребывания частиц в аппарате (в данном случае — в зоне). Дисперсию 5 можно рассчитать по экспериментальным данным с использованием соотношения 5 = = где 3] — дисперсия распределения времени пребывания [c.240]

    Опыты показали что смешение происходит внутри основной части каждого пузыря, но линии тока из пузыря ведут в непрерывную фазу. В последующей теории такая схема потока дополнена допущением, что газ р облаке циркуляции движется вдоль линии тока, пока он не достигнет кильватерной зоны под газовой пробкой. Здесь происходит полное смешение с газом в непрерывной фазе, расположенной на одном уровне с кильватерной зоной, благодаря быстрому движению пленки твердых частиц в этой области. С этим предположением согласуются опыты в которых не удалось обнаружить радиального перепада концентраций трасера, введенного в поршневой псевдоожиженный слой. Следовательно, газ, поступающий через дно газовой пробки, должен иметь концентрацию реагента Ср, равную концентрации, в непрерывной фазе вокруг пробки. Отсюда скорость обмена реагирующим веществом составит [c.201]

    Исследования растворов полимеров показали, что характерное для ннх сильное отрицательное отклонение от неидеальности связано с различием в размерах молекул ВМС и растворителя и особенно с гибкостью линейных макромолекул, которые сильно увеличивают энтропию смешения при растворении. Вклад конформаций макромолекул в энтропию смешения был учтен в теории растворов полимеров, в основе которой лежит уравнение Флори и Хаггинса, полученное с помощью статистической термодинамики. [c.321]

    В этом разделе рассмотрим вопрос об устойчивости стационарных режимов реакторов идеального смешения — простейшей из систем, исследуемых в теории химических реакторов. Б режиме идеального смешения (см. раздел УП.З) значения всех переменных одинаковы по всему объему реактора. В соответствии с этим стационарный режим реакторов данного типа описывается алгебраическими, а нестационарный — обыкновенными дифференциальными уравнениями. Такие системы принято называть системами с сосредоточенными пара- [c.324]


    Сторонники физической теории растворов трактовали образование раствора как суммарный результат молекулярного движения и взаимного сцепления частиц, т. е. полагали, что при растворении доминируют физические процессы смешения веществ друг с другом. Наоборот, приверженцы химической теории подчеркивали преобладающую роль взаимодействия между различными частицами в растворе, полагая, что силы, действующие в растворах, чисто химические, только менее интенсивные. Эти крайние точки зрения дополняют друг друга. Поэтому правильнее было бы не противопоставлять их, а объединять, подчеркивая при этом, что в зависимости от природы компонентов растворов и условий их образования (соотношение между веществами, температура, давление) влияние физических и химических факторов может быть различным. Основу современной теории растворов и составляет синтез этих точек зрения. Единое представление о растворах бьию дано Д. И. Менделеевым. Рассматривая растворы как смеси непрочных химических соединений определенного состава, находящихся в состоянии частичной диссоциации, он подчеркивал необходимость создания общей теории растворов, способной объяснить с единой точки зрения все наблюдаемые факты. [c.133]

    В химической технологии уравнения состояния применяются только для паровой фазы (например, вириальное уравнение), а жидкая и твердая фазы рассчитываются в терминах отклонения от идеального поведения с учетом реальных условий смешения и теории растворов (для жидкостей). [c.98]

    Обычно нри расчетах реакторов смешения предполагается, что реагенты, поступающие на вход, мгновенно перемешиваются. Это позволяет рассматривать реакторы с мешалкой как идеальные, теория расчета которых в достаточной степени разработана. В действительности условия идеального перемешивания не всегда могут быть обеспечены. [c.118]

    При наличии полярных молекул эти уравнения непригодны. Для таких систем, составляющих в большинстве своем процессы основной химии, уравнения состояния применяют только для паровой фазы, а жидкая фаза рассматривается с учетом отклонений от идеального поведения для реальных условий смешения и в соответствии с теорией растворов. [c.40]

    Любая макроскопическая система состоит из очень большого числа частиц. К такой системе применимы законы теории вероятности. Если с этих позиций подходить к рассмотрению естественных процессов, то легко убедиться, что любой самопроизвольный процесс протекает в направлении, при котором система переходит из менее вероятного состояния в более вероятное. Этот вывод может также служить одной из формулировок второго закона термодинамики. Смешение газов в результате диффузии, переход теплоты от более горячего тела к более холодному и т. п. непосредственно связаны с вероятностью состояния исследуемой системы. Статистический характер второго закона термодинамики был раскрыт во второй половине XIX в. благодаря работам Больцмана, Гиббса, Смолуховского и др. [c.219]

    Согласно теории процесса смешения, экспериментальная методика определения эффективности работы любого устройства для смешения пластовой и промывочной воды должна основываться на измерении количества (или доли), мелких капель пластовой воды, которые при движении через это устройство не коалесцируют с промывочной водой. Экспериментально удобнее определять не количество мелких капель, а содержание солей в этих каплях. Практически это можно сделать следующим образом. Отберем две одинаковые по объему пробы нефти в начале и в конце смесительного устройства и проведем обезвоживание этих проб путем длительного отстаивания. Количество солей, которое будет удалено из исходной эмульсии в этих пробах вместе с дренажной водой, равно [c.157]

    Приводимые ниже данные относятся только к растворимости парафина, находящегося в крупнокристаллическом состоянии. Вследствие неоднородности парафина и множества входящих в его состав компонентов понятие о его растворимости является до некоторой степени относительным, поскольку насыщенный раствор наиболее высокоплавких парафинов будет ненасыщенным для находящихся в растворе легкоплавких компонентов.. Кроме того, легкоплавкие компоненты парафина являются растворителем по отношению к высокоплавким компонентам. Растворимость объясняется [41,42] взаимным притяжением молекул растворителя и растворяемого вещества. Современная молекулярная теория растворов базируется на том, что свойства растворов определяются в основном межмолекулярным взаимодействием, относительными размерами, формой молекул компонентов и их стремлением к смешению, которое сопровождается ростом энтропии [43]. Притяжение между молекулами органических соединений создается силами Ван-дер-Ваальса и водородными связями. Силы Ван-дер-Ваальса слагаются из следующих трех составляющих. [c.69]

    Фракционирование битумов основано на различной растворимости их компонентов в разных растворителях. Теория растворимости неэлектролитов развита преимущественно в работах Гильдебранда [41, который для определения теплоты смешения неполярных веществ ДЯ предложил следующее уравнение  [c.8]

    Предложенная П. И. Каменевым теория смешения и разделения потоков в тройнике рассматривает происходящие в нем аэродинамические явления во всех их главнейших чертах и позволяет рассчитать к. м. с. тройника для каждого конкретного случая практики. [c.149]

    Видимо, всегда можно подобрать такие условия, при которых будет осуществляться та или иная модель горения. Задача теории заключается в количественном определении этих условий и в расчете характеристик горения скорости распространения, ширины зоны реакции, пределов воспламенения и т. д. В практически интересных случаях (камеры сгорания, топки и т. д.) в пламени одновременно могут наблюдаться признаки различных моделей. В теории турбулентного горения большую роль играют молекулярно-турбулентная диффузия и смешение. [c.138]

    Следует отметить, что сопло № 2 не соответствует, строго говоря, эжектору с цилиндрической камерой смешения, теория которого рассмотрена в работах [1] и (2J, так как для этого сопла Fk F + Fi (где /= ,—площадь поперечного сечения эжектн-руемой струи на входе в камеру смешения). Экспериментальные характеристики сопла № 2 (фиг. 7—9) при малых значениях коэффициента эжекции несколько расходятся с расчетными [2], однако в целом совпадение опытных и теоретических данных [c.87]

    Полученная формула определяет чисто конфигурационную энтропию, т. е. учитывает только перемену мест молекул растворителя и звеньев цепи макромолекул. Растворы, отвечающие такому предельному случаю, называются атермическими растворами (при смешении не происходит изменения внутренней энергии — тепловой эффект равен нулю). Чтобы данную теорию можно было применить для реальных растворов полимеров, имеющих небольшие отклонения от строго атер-мических растворов, предложено учитывать изменение внутренней энергии с помощью теории регулярных растворов. В отличие от атермических растворов для регулярных растворов энтропия смешения принимается равной энтропии при идеальном смешении, а неидеальность системы обусловлена только изменением внутренней энергии (межмолекулярным взаимодействием). [c.322]

    При этом список работ, поддерживающих то или иное значение п, можно было бы существенно увеличить, но в этом нет необходимости. Здесь уместно упомянуть о необходимости знать структуру турбулентности в пристеночной части течения для развития аналитических методов расчета тепло-и массопередачн. Поэтому различные авторы неоднократно пытались распространить на эту область различные модификации теории пути смешения , чтобы получить распределение средней скорости, совпадающее с экспериментальными данными, и, следовательно, подтверждение выбранного закона Д((г/). Типичным примером подобной работы являются статьи ван Дриста и Хама [56, 60]. [c.181]

    Из теории Флори — Хаггинса следует, что растворение полимера в хороших растворителях сопровождается существенным уменьшением энергии Гиббса, что обусловлено как выделением теплоты (ДЯ<6), так и ростом энтропии. В таких системах Лг > О и % < 7г (отрицательное отклонение от идеальности). Это означает, что силы отталкивания между макромолекулами в растворе полимера обусловлены энтропийной составляющей и взаимодействием с растворителем. В плохих растворителях (Лг < 0) происходит поглощение теплоты (АН >0), и силы оттал14Ивання между макромолекулами имеют исключительно энтропийную природу рост энтропии полностью перекрывает рост энергии Гиббса вследствие межмолекулярного взаимодействия. В этих системах возможно достижение температуры Флори (положительная энтальпия смешения компенсируется избыточной энтропией), ниже которой доминируют силы притяжения между макромолекулами (Лг < 0). [c.324]

    Дубровская Г. К., Вольтер Б. В., Усто11Ч1)вость режимов ненре-рывиого реактора полного смешения. Экзотермическая реакция вида 2А-> В, Теор. основы хим. техиол., 1, Л 4, 494 (1967). [c.181]

    В сотрудничестве с Герцфельдом Гайтлер выполнил теоретическую работу, посвященную изучению давления паров и теплот смешения в бинарных жидких системах по методу Ван-дер-Ваальса. Его диссертация была посвящена теории концентрированных растворов. В ней он предложил рассматривать жидкие бинарные системы неэлектролит— растворитель как пространственную решетку кубической симметрии. На осрове своей модели Гайтлер рассчитал методами статистической физики наиболее вероятное расположение молекул растворителя около молекулы растворенного вещества. Допуская, что теплота смешения ие зависит от температуры и что все парциальные моляльные теплоты примерно одинаковы, он получил уравнение состояния системы, по которому можно было определить некоторые ее свойства. Сопоставление с экспериментом показало, что теория дает вполне удовлетворительные результаты. По-видимому, исследование растворов неэлектролитов методами статистической термодинамики привело Гайтлера (не без влияния Герцфельда) к вопросу о природе химических взаимодействий в них. [c.154]

    Первый этап состоит в идентификации последних членов в правых частях уравнений (3.8). Прежде всего — это задача исследования кинетики химических реакций. Она решается автономно путем постановки специальных кинетических экспериментов в идеальной гидродинавлической обстановке (например, в условиях полного смешения на микроуровне). Кроме того, на этом этапе уточняются феноменологические коэффициенты матриц и Л , для чего используются либо экспериментальные, либо теоретические методы (молекулярно-кинетическая теория газов и жидкостей). Данный круг задач относится к первому (атомарно-молекулярному) уровню иерархической структуры ФХС (см. 1.1). [c.139]

    Одно из наиболее распространенных пламен, получающихся при горении предварительно приготовленных смесей,— пламя бунзеновской горелки. В этой горелке смесь, образующаяся в результате смешения горючего газа с воздухом, горит во внутреннем конусе пламени Так как, однако, содержание кислорода в первоначальной смеси никогда (в условиях горелки Бунзена) не достигает значения, достаточного для полного сгорания, то продуктом реакции но внутреннем конусе бунзеновского пламени является газ, способный к дальнейшему окислению, которое осуществляется во внешнем конусе, Последний представляет собой обычное диффузиоюзое пламя, в котором за счет диффундирующего из окружающего пространства кислорода воздуха происходит догорание поступающего из внутреннего конуса газа. (О теории горелки Бунзена см. монографию Моста [55, гл. III..31 и [523].) [c.234]

    Гидродинамические характеристики вод5шых струй высокого давления. Дпя научно обоснованного выбора технологического режима гидравлического извлечения кокса необходимо располагать надежным методом расчета гидродинамических характеристик водяной струи. Свободную (незатопленную) струю можно рассматривать как узкую область турбулентного движения, характеризующегося значительдю большей скоростью в одном - главном - направлении, чем скорость во всех остальных. В неизотропном турбулентном потоке, каким жляется струя, имеет место как порождение, так и диссипация турбулентности. Из теории неизотропной свободной турбулентности известно, что развитие турбулентного течения вниз по потоку зависит в сильной степени от условий его возникновения. Это подтвер ждено эмпирическим фактором, что пространственные изменения в поперечных направлениях струи намного больше соответствующих изменений вдоль оси струи, в то время как отношение соответствующих скоростей прямо противоположно. Порождение турбулентности в струе происходит из-за градиента осредненной скорости, который зависит от турбулентности в источнике возникновения струи, перенесенной вниз по потоку за счет турбулентной диффузии. Для случая неизотропной турбулентности разработано несколько феноменологических полуэмпирических теорий, из которых наиболее известная - теория пути смешения Прандтля [2023. Однако ни одна теория не объясняет действительного распределения турбулентных пульсаций и физический механизм свободной турбулентности, поскольку они базируются на экспериментальных данных относительно осредненных скоростей. [c.153]

    Основы теории оптимального проектирования таких реакторов даны Хорном [77] вместе с элегантной процедурой учета температурных ограничений. Хорн рассмотрел, однако, только случай реактора с косвенным охлаждением (теплообменник) между слоями. Наши исследования показали, что аналогичная методика возможна для любой формы промежуточного охлаждения и распространяется на случай охлаждения смешением потоков, обыч1Ю применяемого в конверсии СО. Были также развиты процедуры для автоматического учета ограничений иа общий рост температуры, имеющих место при проектировании реакторов для автотермнческих процессов (иапример, в синтезе аммиака). [c.176]

    Все связи в комплексных соединениях являются равноценными. Математически по теории валентных связей это можно описать как смешение з-, р- и /-орбиталей и образование так называемых гибридных орбиталей. В координационных соединениях переходных металлов (с незаполненными -орбиталями) большое значение имеет гибридизация с участием -орбиталей. Так, например, шесть связей между ионом Ре + и шестью ионами Р в комплексном ионе [РеРв] " согласно теории валентных связей следует рассматривать как образованные шестью гибридными орбиталями 3 /Ч 4р ( зр -орбитали), а шесть связей между ионами Ре + и ионами СЫ — как образованных шестью орбиталями (яр й -орбитали). [c.45]

    Для онисання состояния дисперсионной среды НДС, т. с. нефтяного раствора, применима теория регулярных растворов Дж. Гильдебранда [73]. В рамках этой теории описывается растворимость газов и твердых веществ в жидкостях, взаимная растворимость жидкостей в том случае, когда компоненты системы являются неполярными веществами с близкими молярными объемами. Основные допущения теории Гильдебранда — беспорядочное распределение молекул разного сорта при смешении компонентов раствора и идеальное значение энтропии смешения. Энергия притяжения между однотипными молекулами в теории Гильдебранда характеризуется параметром растворимости [c.39]

    Это соотношение используют при выборе аппаратуры для экспериментов. Авторы попытались согласовать величину с критерием Вебера представляющим собой отношение сдвиговых сил к силам поверхностного натяжения в системе. Теория смешения, основанная на статистической теории турбулентности, была дана Шинаром (см. стр. 42). [c.26]

    В 1938 г. проф. П. Н. Каменев опубликовал свою работу по теории смешения и разделения потоков в тройниках воздуховодов [21 ] и этим впервые подвел теоретическую базу под выбор величин к. м. с. тройников. Позднее (в 1954 г.) теория слияния и разделения потоков в тройнике была разработана В. Н. Талиевым [40] 148  [c.148]

    Существование лиминарного течения возможно только при малых Ке. При Не > Кекр устойчивость течения нарушается, и движение отдельных малых объемов газа становится неупорядоченным, пульсирующим. Мгновенное значение вектора скорости в той или иной точке потока отличается от значения, осредненного по времени. Точно так же отличаются мгновенные и средние значения давления, плотности, концентрации реагирующих веществ и т. д. Турбулентное горение представляет собой нестационарный процесс турбулентного смешения продуктов сгорания и свежей смеси и реагирование последней вследствие повышения ее температуры. В этих условиях закономерности ламинарного распространения реакции теряют свою силу. Решающими факторами становятся турбулентные пульсации и связанная с ними интенсивность перемешивания продуктов сгорания со свежей смесью. Если в теории ламинарного горения основные трудности вызваны отсутствием точных кинетических параметров, которые должны быть подставлены в систему уравнений, то в теории турбулентного горения необходимая система уравнений даже и не составлена. В настоящее время не только отсутствует возможность создания замкнутого расчета, но нет и единого понимания механизма процесса. [c.134]


Библиография для Смешение теория: [c.194]   
Смотреть страницы где упоминается термин Смешение теория: [c.8]    [c.89]    [c.117]    [c.389]    [c.90]    [c.220]    [c.280]    [c.26]    [c.58]    [c.98]   
Переработка каучуков и резиновых смесей (1980) -- [ c.107 , c.137 ]

Переработка термопластичных материалов (1962) -- [ c.132 , c.457 ]




ПОИСК







© 2024 chem21.info Реклама на сайте