Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Закономерности окисления

    Кинетические закономерности окисления коксовых отложений [c.68]

    В результате исследований, посвященных окислению и стабилизации гидрогенизационных топлив, возник ряд важных задач методологического и теоретического характера. Так как топлива представляют собой смесь индивидуальных углеводородов, то теоретической основой оценок окисляемости и способов стабилизации топлив может служить цепная теория жидкофазного окисления углеводородов. Поэтому естественной является преемственность и методологического подхода к вопросам окисления и стабилизации индивидуальных углеводородов и топлив. В основу методологии исследования топлив были положены кинетические методы, разработанные в процессе изучения жидкофазного окисления индивидуальных углеводородов. Применение этих методов к реактивным топливам оказалось весьма эффективным, причем не только при изучении кинетических закономерностей окисления, но и при решении чисто практических задач.  [c.23]


    Кинетические закономерности окисления реактивных топлив [c.76]

    КИНЕТИЧЕСКИЕ ЗАКОНОМЕРНОСТИ ОКИСЛЕНИЯ ТОПЛИВ В ПРИСУТСТВИИ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ [c.206]

    Важное значение для получения, очистки и использования нефтепродуктов имеют вопросы окисляемости углеводородов кислородом воздуха в жидкой фазе [161, 162]. Определенные закономерности окисления аренов отмечены в работах [160, 161]. [c.239]

    При глубоком (продолжительном) окислении гидрогенизационных топлив в условиях хранения могут ухудшиться и другие эксплуатационные показатели повышается коррозионная агрессивность вследствие накопления кислых продуктов, увеличивается склонность к образованию отложений на горячих стенках элементов топливных систем в результате образования смол из продуктов окисления [15, с. 92—95 345 346]. Поэтому антиокислительные присадки, вводимые в гидрогенизационные топлива, должны обеспечивать стабилизацию топлив не только в топливных системах, но и при хранении. При этом важно, чтобы в течение сроков хранения (стандартами установлено 5 лет) присадка сохранилась в топливе в концентрации, необходимой для надежной стабилизации топлива в топливных системах при последующем применении его в авиатехнике. Рассмотрим кинетические закономерности окисления топлив при хранении. [c.244]

    Кинетические закономерности окисления индивидуальных углеводородов выполняются и для реактивных топлив. Кинетические кривые для окисления топлива растворенным кислородом приведены на рис. 5.3. [c.158]

    Научная новизна. Исследованы основные закономерности окисления меркаптидов натрия кислородом воздуха в присутствии высокоактивных отечественных фталоцианиновых катализаторов, показана высокая активность полифталоцианина кобальта и возможность повышения активности фталоцианинов путем добавления в щелочные растворы катализаторов ди- и триэтиленгликолей. Впервые в промышленных условиях исследованы новые эффективные каталитические системы для гидроочистки бензинов. [c.5]

    Известно, что начало образования углеродистых продуктов связано с окисляемостью масла. Не останавливаясь на основных закономерностях окисления масел (см. раздел 2.3), отметим лишь, что одним из наиболее важных моментов данного процесса является каталитическое действие металла [223, 224]. На интенсивность протекания противоокислительных процессов влияют также твердые продукты, диспергированные в объеме масла (рис. 4.7), причем каталитическая активность (резкое увеличение вязкости масла) отмечается в случае проявления ими электроноакцепторных свойств (графит, сажа), а ингибирующая способность характерна для (Мо52)[223]. [c.211]


    Дизельные топлива представляют смесь различных углеводородов, в этой связи справедливо полагать, что при исследовании процессов окисления и способов их торможения можно использовать цепную теорию жидкофазного окисления индивидуальных углеводородов и методик, основанных на получении количественной информации о кинетике процесса [68-70]. Правомерность такого подхода была установлена при изучении кинетических закономерностей окисления и стабилизации реактивных топлив [66]. [c.33]

    Таким образом, появление стадии окислительной регенерации значительно усложняет технологические схемы и аппаратурное оформление процессов. Она существенно влияет на их экономику, а для каталитического крекинга даже определяет рентабельность и конкурентоспособность различных вариантов этого процесса. История создания и развития таких важных каталитических процессов нефтепереработки и нефтехимии, как крекинг, риформинг, дегидрирование, гидрокрекинг и гидроочистка неразрывно связана с решением проблем окислительной регенерации используемых катализаторов. Естественно, чт0 эта стадия привлекает к себе пристальное внимание исследователей уже не одно десятилетие. Результаты ранних исследований закономерностей окисления кокса обобщены в работе [2], опубликованной 20 лет назад. С тех пор в научной литературе накоплены новые сведения по теории и практике окислительной регенерации катализаторов и назрела необходимость систематизировать и обобщить имеющийся материал, рассмотреть в тесной взаимосвязи характеристики кокса, образующегося на катализаторах, механизм и кинетику его окисления изменение свойств катализаторов при регенерации, основы промышленной технологии и аппаратурного оформления процесса. [c.4]

    ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЗАКОНОМЕРНОСТЕЙ ОКИСЛЕНИЯ КОКСА [c.14]

    На основании известных в настояшее время данных о закономерностях окисления кокса на катализаторах крекинга физическую картину этого процесса можно представить следующим образом. [c.32]

    Таким образом, в отличие от катализаторов крекинга сведения о физико-химических закономерностях окисления кокса на алюмохромовых катализаторах очень малочисленны и противоречивы, а для современных марок вообще отсутствуют. [c.36]

    К.И.Иванов установил следующие важные закономерности окисления углеводородов различного строения, входящих в состав нефтепродуктов  [c.31]

    Поскольку жирные кислоты, образующиеся лри деструкции углеродного скелета, подвергаются дальнейше.му окислению значительно быстрее, чем исходный углеводород, закономерности окисления нарафи-нон довольно сильно замаскированы. В результате получается, что при несколько повышенных превращениях относительное содержание низших кислот в продуктах реакции увеличцвается. Чем выше молекулярный вес исходного парафина, тем резче это происходит. [c.586]

    Однако в некоторых случаях каталитическая поверхность оказывает влияние на закономерности окисления коксовых отложений при образовании коксовых отложений она способствует формированию кокса определенной реакционной способности к окислению, а непосредственно в процессе выжигания может ускорять отдельные стадии химического превращения. При этом на самом катализаторе могут протекать тйпохймичёские процессы, приводящие к изменению [c.68]

    Для изучения закономерностей окисления коксовых отложений были исследованы состав [3.60] и особенности выгорания основных элементов коксовых отложений на закок-сованном и регенерированном железоокисном катализаторе (рис. 3.1), получены зависимости скорости выгорания углерода и серы от времени выгорания [3.61]. Кинетические кривые выгорания углерода и серы на гранулированном же- [c.81]

    Помимо важного практического значения, исследование окисления топлив представляет теоретический интерес, так как в отличие от сравнительно простых модельных систем, используемых, как правило, для научения закономерностей окисления органических соединений, топлива представляют собой сложную смесь углеводородов (гидрогенизационные топлива) и ге-тероатомных соединений (прямогонные топлива), выполняющих роль природных ингибиторов окисления. [c.7]

    Алюмохромовые катализаторы дегндрироваиня. Результаты исследования закономерностей окисления кокса на алюмохромовых катализаторах дегидрирования приведены в работах [95, 96]. Установлено, что окисление кокса на этих катализаторах протекает в кинетической области при температурах на 100-120 °С ниже, чем для непромотированных катализаторов крекинга. Таким образом, алюмохромовый катализатор существенно ускоряет процесс окисления кокса, однако механизм этого ускорения не изучен. [c.35]

    До недавнего времени с этой целью кинетические методы использовали в весьма ограниченном масштабе. Объясняется это, вероятно, тем, что только в последние десять — пятнадцать лет в полной мере проявились широкие возможности использования методов для изучения окисления и управления окислением органических соединений. Другая причина, видимо, в том, что при применении бензинов, прямогонных реактивных и дизельных топлив основной целью было предотвращение в них осадко- и смолообразования, т. е. образования продуктов глубокого окисления, в то время как кинетические методы наиболее информативны при изучении начальных стадий окислительного процесса. При использовании реактивных топлив, получаемых гидроге-ннзационными процессами, самое главное — предотвратить образование первичных продуктов окисления топлив — активных радикалов и гидропероксидов. Для этого необходимо знать механизм и закономерности окисления на начальных стадиях следовательно кинетические методы становятся незаменимыми. [c.24]


    Участие радикалов ингибитора в продолжении цепей по реакции с гидропероксидом, как мы видим, не только вызывает ускорение окисления, но и существенно меняет кинетические закономерности окисления. Скорость окисления растет прямо пропорционально (а не y ), уменьшается обратно пропорционально [InH] 2 ц уем выше, чем больше [ROOH]. Продолжение цепи по реакции In- с ROOH объясняет, почему эффективность тормозящего действия ингибитора снижается, если его вводить не в исходный углеводород, а по ходу опыта в уже окисленный углеводород. В последнем случае содержащийся в углеводороде гидропероксид обеспечивает участие радикалов ингибитора в продолжении цепей и таким образом эффективность торможения снижается. Более высокая скорость инициирования в уже окисленном углеводороде приводит одновременно к сокращению периода торможения. [c.110]

    Такой механизм находится в хорошем соответствии с наблюдаемой закономерностью окисления одноатомпых спиртов они легко окисляются в водной среде в кислоты, а в безводной — в альдегиды [И]. [c.51]

    Д. П. До1бычин и Ц. М. Клибанова [33] считают, что закономерности окисления кокса осложнены неравномерным распределением его по радиусу зерна катализатора. По их дан-нь , в периферийном слое толщиной 0,1 мм откладывается до 60% кокса. [c.76]

    КИНЕтаЧЕСКИЕ ЗАКОНОМЕРНОСТИ ОКИСЛЕНИЯ ТРАДИЦИОННЫХ ДИЗЕЛЬНЫХ ТОПЛИВ [c.77]

    В заключение необходимо отметить, что описанные выше методики исследования позволяют получать подробную информацию о закономерностях окисления кокса на катализаторах. Можно наблюдать динамику изменения массы закоксовашюго образца в изотермических и неизотермических условиях, наличие составляющих кокса разной реакционной способности к окислению, изучать закономерности поглощения кислорода и его выделения с газообразными продуктами. Однако при окислительной регенерации закоксованных катализаторов одновременно с удалением кокса возможно протекание процессов в структуре самого катализатора, приводящих к изменению его свойств. Поэтому исследования закономерностей выжига кокса необходимо дополнять [c.20]

    В связи с ужесточением режимов эксплуатации катализаторов доля кокса, богатая легкогорючей составляющей, уменьшается. Кроме того, учитывая больигае тепловые эффекты окисления этой составляющей коксовых отложений, которые могут быть причиной перегрева и дезактивации катализатора при регенерации, ужесточают и режимы обработки закоксованных катализаторов перед выжигом с целью максимального удаления легкогорючей части кокса. Поэтому закономерности окисления кокса при регенерации в основном определяются горением трудногорючей составляющей, хотя высокореакционные компоненты кокса частично сохраняются даже после продувки закоксовашюго катализатора гелием при 650 °С (ап. рис. 2.7, кривая 5). [c.26]

    Основное различие низкотемпературного горения углерода и окисления кокса при регенерации заключается в том, что последний процесс протекает на поверхности кaтaJшзaтopa. Вдтявве катализатора шг закономерности окисления кокса может быть двояким при закоксовывшии он способствует формированию кокса определенной реакционной способности, а при окислении ускоряет отдельные стадии этого процесса, изменяя в определенной мере и его механизм. [c.27]

    В процессе крекинга тяжелого углеводородного сырья на катализаторе отлагаются металлы, которые могут влиять на закономерности окисления кокса в регенераторе. Детально это исследовано авторами работы [94]. Установлено, что при добавлении в катализатор различных металлов качественный характер регенерации катализатора не изменяется. Однако металлы, нанесенные на катализатор, интенсифицируют выжиг кокса в начальный период по сравнению со скоростью выжига исходного ка (нлизатора. Наибольшее ускорение наблюдается на образцах, содержащих хром. За первые 25 мин на образце катализатора, содержащем 0,8% (масс.) Сг, сгорает 84% отложенного кокса, в то время как на исходном катализаторе за это же время сгорает только 52% кокса. С уменьшением содержания хрома скорость выжига кокса заметно снижается. На образцах, содержащих ванадий, медь и молибден, доля сгоревшего кокса в начальный момент времени также значительно выше, чем на исходном катализаторе, но несколько меньше, чем на образцах, содержащих хром. Так, при примерно таком же содержании металлов за первые 25 мин выгорает только 70-74% отложенного кокса. При добавлении железа, никеля и кобальта скорость регенерации исходного катализатора мало изменяется. При содержании 0,8% (масс.) железа за первые 25 мин сгорает только 66% отложенного кокса, а на образцах, содержащих 0,48-0,50% (масс.) никеля и кобальта, за то же время сгорает 55% кокса при регенерации исходного образца катализатора сгорает 52% кокса. Свинец не влияет на регенерацию катализатора. [c.33]

    Данные по закономерностям окисления кокса на хромкальцийни-кельфосфатном катализаторе марки ИМ-2206 приведены ъ работе [57]. Исследования проводили при парциальных давлениях кислорода от 0,001 до 0,006 МПа, содержании кокса до 0,7% (масс.), мольном соотношении водяной пар/воздух, равном 2, 15 и 44, температурах 620-675 °С. Установлено, что скорость выгорания кокса не зависит от исходного сырья. Обработка закоксованного катализатора потоком гелия с водяным паром в течение 30 мин не изменяла массы кокса. Продукты регенерации содержали только диоксид углерода и водяной пар. Введение диоксида углерода в исходную смесь в количестве, в полтора раза превышающем образующееся в ходе эксперимента, не изменяло скорости выгорания кокса, что указывает на отсутствие влияния СО2 на закономерности этого процесса. Наблюдался нулевой порядок реакции по водяному пару. Установлено, что скорость процесса окисления кокса возрастает с увеличением содержания кокса и кислорода. Однако эта зависимость по каждому компоненту является нелинейной. При выводе кинетического уравнения, описывающего наблюдаемые закономерности, предполагали двухстадийную схему протекания процесса [c.38]

    В гл. 1, разд. 2, было показано, что нормальная скорость пламени определяется максимальной скоростью реакции в пламени. Эта скорость соответствует зоне с температурой Ттал=Ть—в, т. е. зоне завершающей стадии реакции процесса, которая здесь всегда заключается в догорании окиси углерода. При соответствующем уменьшении концентрации горючего достигаются предельные условия протекания реакции в пламени, необходимые для того, чтобы было возможным стационарное горение. Они определяются едиными для любого исходного горючего кинетическими закономерностями окисления окиси углерода и величиной температуры горения. Когда температуры горения равны, составы таких вторичных смесей обычно не очень сильно зависят от состава исходных смесей, их различия слабо влияют на скорость догорания окиси углерода. Поэтому скорость завершающего процесса — взаимодействия СО+О2, а с нею и величина Ып в основном определяются температурой зоны реакции, которая близка к Ть- В результате температура горения оказывается практически единственным фактором, определяющим скорость пламени в смесях подкритического состава. [c.58]

    Поскольку меркаптиды натрия в насыщенных водно-щелочных растворах находятся в виде смеси с различной молекулярной массой, для выявления общих закономерностей процесса, представляет интерес изучения кинетических закономерностей окисления меркаптидов натрия на этил-меркаптиде натрия. Критерием скорости нротекания реакции служила убыль концентрации этилмеркаптида натрия в водно-щелочном растворе. [c.50]

    Продолжая последование формально-кинетических закономерностей окисления ароматических углеводородов, Бургоин далее показал, что ско- [c.427]

    Здесь следует коротко остановиться на результатах, полученных в двух более ранних работах, в которых также были исследованы формальнокинетические закономерности окисления бензола, — Гиншельвуда и Форта [18] и Амиеля [19—21]. [c.428]

    В продолжение исследований по разработке методов синтеза новых функциональных производных полибромароматических соединений [1-3] изучены закономерности окисления метильной группы пентабромтолуола а также возможность вовлечение ее за счет повышенной кислотности в реакции конденсации с альдегидами и нитро-зосоединениями. [c.130]


Библиография для Закономерности окисления: [c.227]   
Смотреть страницы где упоминается термин Закономерности окисления: [c.79]    [c.75]    [c.68]    [c.77]    [c.23]    [c.39]    [c.34]    [c.43]    [c.367]    [c.17]   
Смотреть главы в:

Коррозия и защита от коррозии -> Закономерности окисления


Тугоплавкие материалы в машиностроении Справочник (1967) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте