Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уголь древесный свойства

    Адсорбенты можно разделить на следующие общие категории бокситы (природные минералы, состоящие в основном из А1зОз) активированная окись алюминия (очищенный боксит) гели (вещества, состоящие из окиси кремния или алюмогеля и получаемые с помощью химических реакций) молекулярные сита (натрийкальциевые силикаты, или цеолиты) углерод (древесный уголь), адсорбционные свойства которого получаются в результате активирования. Все эти вещества, кроме угля, применяются для осушки газа. Активированный уголь используется для извлечения углеводородов из природного гааа и очистки газа от некоторых примесей. Активность угля по воде очень незначительна. Первые четыре класса адсорбентов приведены в порядке возрастания их стоимости, определяемой их свойствами. Чем больше поглотительная активность адсорбента, тем он дороже стоит, хотя пропорциональность здесь и не соблюдается. Окончательный выбор адсорбента должен производиться с учетом стоимости оборудования, срока службы адсорбента, эффективности его применения в данном процессе и т. д. Чрезмерное внимание к одной лишь стоимости может [c.240]


    Многочисленные опыты показывают, что в среде жидкого кислорода и воздуха горение ряда органических веществ протекает более интенсивно. Необходимо при этом, чтобы реакция началась до соприкосновения с жидким кислородом или воздухом. Например, уголь дуговой лампы, один из концов которого нагрет до красна, при погружении в прозрачный сосуд Дьюара с жидким кислородом продолжает гореть очень спокойно с интенсивным выделением света и теила. Бурная реакция происходит при погружении в сосуд с жидким кислородом раскаленных проволок из стали и магния. В ряде случаев реакция горения сопровождается взрывом. Например, прп погружении в жидкий воздух горящего кусочка фосфора происходит сильный взрыв. Смеси жидкого кислорода со спиртом и керосином обладают очень сильными взрывчатыми свойствами при наличии достаточного импульса. Эти свойства жидких воздуха и кислорода позволили использовать их для получения взрывчатых веществ. В качестве взрывчатого вещества вначале применяли древесные опилки, пропитанные жидким воздухом, обогащенным кислородом. В настоящее время взрывчатые вещества, представляющие смесь тонко измельченного горючего вещества с жидким кислородом, получили название оксиликвитов [22] и их широко применяют в промышленности. [c.44]

    Лит. К о р о б к и н В. А., Углежжение. (Теория и практика), Свердловск — М., 1948 Козлов В. Н,, Древесный уголь, его свойства и области применения, Тр. Ин-та лесохозяйственных проблем, (Рига), 1958, 16 Корякин В. И,, Термическое разложение древесины, М., 1962 [c.164]

    Свойства древесного угля [7—9]. Древесный уголь является конечным продуктом термического разложения древесины без доступа воздуха. Установлено, что различные древесные породы при одной и той же температуре переугливания дают уголь примерно одинакового элементарного состава (табл. 18). [c.65]

    Уголь древесный, адсорбционная способность Угольная кислота, образование и свойства.  [c.325]

    Основными вспомогательными фильтрующими веществами являются диатомит, перлит, целлюлоза, асбест, уголь, древесная мука и др. Наиболее распространен диатомит (кизельгур) — окаменевшие остатки микроскопически малых морских растений (диатомей). Диатомиты различных месторождений отличаются по своим свойствам и по-разному используются при фильтровании. Диатомиты глубинного происхождения менее пористы, быстрее осаждаются и меньше пригодны для фильтрования [47]. Большие залежи диатомитов обнаружены на территории Армянской ССР. [c.45]


    Некоторые пористые твердые тела, например активированный древесный уголь, силикагель или глинозем, обладают способностью поглощать на своей поверхности большие количества других веществ как из раствора, так и из газовой фазы. Это явление, открытое более 150 лет назад, называется адсорбцией. Твердые тела, обладающие таким свойством и называемые адсорбентами, имеют миллионы мельчайших пор, в результате чего их эффективная поверхность исключительно велика. Например, некоторые сорта древесного угля обладают удельной поверхностью более 1300 M je, а продажный силикагель может иметь удельную поверхность выше 800 м /г. [c.136]

    Уголь [104—106] —самый разнообразный, животного и растительного происхождения — костный, древесный, сахарный и пр. Получают его термообработкой сырья без доступа воздуха и дальнейшей активацией водяным паром, СОг и некоторыми другими соединениями. Пористость — 60—70%, удельная поверхность — до 1200 м /г. Выпускается уголь в виде порошка или гранул, его марка определяется исходным сырьем, способом активации, формой частиц. Угли, приготовленные различными способами, различаются по составу и структуре, содержат примеси посторонних веществ, что оказывает влияние на их адсорбционные и каталитические свойства. [c.136]

    Структура АУ (антрацитового и древесного) почти одинаковая. Структура и свойства древесного угля зависят от исходного материала. Чем плотнее древесина, тем более мелкопористым получается активированный уголь. Сосновый уголь крупнопористый, механически непрочен и практически ие применяется в адсорбционных процессах. Самые мелкопористые и прочные угли получаются из скорлупы орехов и косточек плодов (скорлупа кокосового ореха, косточка абрикоса). Активацией можно добиться удельной поверхности А У до 1000 лг /г. [c.85]

    В опытах А. М. Гурвича и Т. Б. Гапон [174] этим методом весьма просто осуществлена очистка сульфатов цинка и кадмия от следов меди, железа, никеля и кобальта — металлов, которые даже в небольших концентрациях оказывают сильное влияние на оптические свойства люминофоров, полученных на основе сульфидов цинка и кадмия. Оказалось возможным удалить из растворов сульфатов цинка и кадмия одновременно железо, медь, никель и кобальт путем фильтрования растворов через колонку, содержащую в верхнем слое активный уголь марки ДАУХ ( древесный активированный уголь для хроматографии ) и диметилглиоксим в отношении 10 1, а в нижнем слое — один уголь. Нижний слой необходим для задержания в колонке частично растворимого в воде диметилглиоксима (0,04% при 18° С). [c.218]

    Свободный углерод встречается в виде двух простых веществ — алмаза и графита. С некоторой натяжкой (ввиду наличия примесей) к этим двум формам можно прибавить и третью — так называемый аморфный углерод, важнейшими представителями которого являются сажа и древесный уголь. По внешним свойствам алмаз резко отличается от обеих других модификаций. Он бесцветен, прозрачен, имеет плотность 3,5 г/см и является самым твердым из всех минералов. Графит представляет собой серую, непрозрачную и жирную на ощупь массу с плотностью 2,2 г/см . В противоположность алмазу он очень мягок— легко царапается ногтем и при трении оставляет серые полосы на бумаге. Аморфный углерод по свойствам довольно близок к графиту. Плотность его колеблется обычно в пределах 1,8—2,1 г/см . У некоторых разновидностей аморфного углерода сильно выражена способность к адсорбции (т. е. поглощению на поверхности) газов, паров и растворенных веществ. [c.292]

    Краткая характеристика элементов подгруппы углерода. Углерод. Аллотропные видоизменения углерода. Древесный уголь. Поглотительная способность угля. Активированный уголь и его применение. Двуокись углерода, получение, свойства и применение. Угольная кислота и ее соли. Окись углерода. Твердое, жидкое и газообразное топливо. [c.198]

    Структура исходного материала может частично сохраняться. Такие структурные реликты и палимпсесты могут сильно влиять на свойства углей. Например, строение растительной ткани древесных углей сохраняется в такой степени, что можно определить породу дерева, из которого получен уголь. Этим же определяется рыхлое сложение древесных углей, что весьма важно для использования их в качестве сорбентов. [c.52]

    Белки имеют тенденцию адсорбироваться на различных материалах, это свойство можно использовать для разделения. Целлюлоза, стекло и силикагель — все они нашли применение для адсорбции белков. Классический способ удаления растворенного вещества из раствора — использование измельченного древесного угля, но в случае белков адсорбция затрудняется из-за несоответствия между большим размером молекул белка и малыми порами угля. Древесный уголь модифицируют, покрывая его декстраном и 1 С, и в растворе сохраняется комплекс 1 С-антиген, тогда как антиген адсорбируется на древесном угле. В случае меченого антигена этим способом удаляют из раствора свободную метку, оставляя связанную метку для определения в растворе. [c.577]


    Активный уголь поглощает вредные примеси из крови и это свойство широко используют для лечения тяжело больных людей. Основным элементом медицинского прибора является колонка диаметром 6 см и высотой 20 см из стекла специального назначения, заполненная 200 г древесного угля крупностью 0,5—2 мм [c.297]

    В случае тонкодисперсных суспензий, а также легко деформирующихся твердых частиц закупорку пор фильтровальной перегородки и самого осадка часто можно предотвратить путем добавления к суспензии вспомогательных веществ или расположения слоя последних на перегородке. Эти вещества (диатомит, перлит, асбест, древесный уголь, силикагель и др.) образуют как бы каркас, препятствующий закупориванию пор. Если добавляемые вещества обладают адсорбционными свойствами (например, силикагель, активированный уголь), то они часто способны задерживать твердые частицы размером до 0,01 мкм или обесцвечивать жидкую фазу суспензии. Используемые вещества должны быть, разумеется, химически инертны по отношению к суспензии и нерастворимы в ее жидкой фазе, имея при этом узкий фракционный состав (частицы близких размеров). Выбор вспомогательных веществ и способа их использования производят опытным путем. [c.228]

    По физико-механическим свойствам лигниновый уголь не уступает древесному. Насыпной вес лигнинового угля в 1,5 раза больше, что имеет большое значение для удешевления транспортировки [c.68]

    Древесный уголь обладает высокой пористостью, чем объясняются его адсорбционные свойства Пористость угля можно определить по его плотности с учетом плотности угольной массы, равной около 1,8 г/см  [c.53]

    Производство окисленного древесного угля Древесный уголь дробят, сортируют и окисляют при повышенной темпера туре кислородом воздуха В некоторых случаях окисленный уголь подвергают термообработке и повторному окислению В результате на поверхности угля образуются различные функциональные группы — карбоксильные, фенольные, спирто вые и др Меняя условия окисления, можно добиться преобла дания тех или иных групп и придания продукту окисления раз личных свойств — ионообменных, комплексообразующих, ката литических и др [c.81]

    Капиллярно-пористые тела состоят из твердых частиц или агрегатов частиц, пространство между которыми представляет собой капилляры, заполненные газом или жидкостью. Содержание жидкости в твердом теле характеризуют влагосодержанием — массой влаги, приходящейся на единицу массы абсолютно сухого вещества. Различают капиллярно-пористые тела (древесный уголь, песок и т. д.), объем которых не зависит от объема влаги, находящейся в пространстве между твердыми частицами, и капиллярнопористые коллоидные тела (бумага, ткани, древесина, торф и т. д.), стенки капилляров которых эластичны и под действием жидкости набухают. Свойства капиллярно-пористых тел изменяются с изменением влажности — количества находящейся в них жидкости. [c.430]

    В качестве нссителей применяют гели, вещества губчатого строения,, пористые неорганические вещества (неглазурованный фарфор, пемзу, боксит, шамот, каолин и глину), различные виды углерода (костяной уголь, древесный уголь и пр.), волокнистые материалы (целлюлозу, хлопок, асбест и пр.) гидравлические Вяжущие материалы [например соединения, образованные гидроокисью кальция и имеющие свойства гидравлических цементов, простейшие представители —гипс (Са804 2Н2О), портланд-цемент и т д.], природные силикаты, представляющие собой легкие, рыхлые порошкообразные материалы с мелким однородным зерном, например диатомит (диатомеи — это микроскопические одноклеточные морские или пресноводные водоросли), инфузорную землю, желтую глину (японская кислая земля), кизельгур и пр., плотные поверхности, например железные шарики металлы (платина, палладий, медь) в виде проволоки или сетки, сплавы металлов, гранулированный алюминий, соли, например углекислый кальций, сульфат бария или простые и сложные силикаты, природные или искусственные цеолиты, вещества в коллоидном состоянии (смола, желатин, декстрин и пр.) или глиноподобные вещества, например бентонит. [c.473]

    Лит Завьялов АН Калугин Е Н, Хями древесшпа 1978, №4, с 88-92 Древесный уголь Получение, основные свойства и области применения древесного угля, М, 1979, Тарковская И А, Окисленный уголь. К, 1981 [c.120]

    Так, известно, что свойства разных форм одного и того же элемента — углерода — сильно зависят от каких-то мало уловимых причин существует кокс, полукокс, уголь каменный, уголь древесный активированный. Различия свойств этих веществ нельзя объяснить только небольщими количествами примесей других элементов. Между тем одни из них, будучи помещены в коробку противогаза, могут задерживать ядовитые вещества, другие — нет. Одни могут сделать бесцветным раствор загрязненного вещества при его перекристаллизации, а другие — не могут. Когда же эти разновидности углерода помещают в датчик спектрометра ЭПР, суть дела обнажается немедленно. Оказывается, что чем выше была температура коксования угля, тем более интенсивный сигнал видит прибор. Мало того, если коксование делать в отсутствие воздуха — в высоком вакууме,. вместо одного сигнала появляется два. Второй, однако, быстро исчезает при соприкосновении кокса с воздухом. И одновременно резко снижается активность кокса во взаимодействии с разнообразнейшими реагентами. Вероятно, неуловимые причины различия свойств угля разных сортов в том и состоят, что одни из них содержат больше, а другие — меньше радикальных центров, свободных валентностей. А чем их больше, тем уголь активнее в адсорбции и других процессах. При хранении же на воздухе радикальные центры постепенно закрываются молекулами кислорода. Кроме того, из-за этих же центров мельчайшие частицы могут срастаться в более [c.332]

    Физические свойства. У. известен в виде двух кристаллич. модификаций — алмаза и графита. Термодинамически стабильным при обычных условиях является графит. Область устойчивости алмаза находится при высокпх давлениях, однако благодаря кинетич. затрудненности перехода в графит он также существует при обычных условиях. Расчетным путем получено следующее ур-ние для кривой равновесия алмаз графит 7(атм) = 7000 - - 27 Г (при Т> >1200° К). Тройная точка равновесия алмаз гра-фит гжидкий У. на диаграмме состояния У. находится ок. 3800+200° и 125 кбар. Для твердого У. характерно также состояние с неупорядоченной структурой, называемое часто аморфным У. кокс, сажа, уголь древесный, активный уголь и др. Все формы У. нерастворимы в обычных неорганич. и органич. растворителях и растворяются в расплавленных металлах железе, кобальте, никеле, платиновых металлах и др., из к-рых при охлаждении У. кристаллизуется в виде графита или карбидов металлов. Нек-рые физич. свойства кристаллов алмаза и графита приведены в таблице. [c.153]

    Угли существенно различаются по своим свойствам в зпвиси-мости от вещества, из которого оии получены, п способа получения. Кроме того, они всегда содержат примеси, сильно влияющие на нх свойства. Важнейшие технические сорта угля кокс, древесный уголь, костяной уголь и сажа. [c.436]

    К порошкообразным наполнителям относятся распространенные деитевые материалы — древесная мука, получаемая тидательным измельчением древесных опилок и стружек, торфяная мука, уголь, сажа, кварцевая мука, песок и другие минеральные наполнители, сообщающие пластическим массам теплостойкость и улучшающие их электроизоляционные свойства. [c.381]

    Древние культурные народы Европы и Азии знали уголь, однако не добывали и не использовали его в больших количествах для практических целей. Греческий философ Аристотель, в сочинении Метеорология сравнивает уголь с древесным углем, а его ученик Теофраст в своей Истории камней называет уголь горящими камнями , которые при горении самоопустошаются . Теофаст называет уголь и антраксом , откуда происходит слово антрацит . Он описывает некоторые физические свойства угля и указывает места известных ему месторождений. [c.13]

    Кроме ископаемых углей важнейшими техническими сортами угля являются кокс, древесный уголь, сажа, костяной уголь. Различные специальные методы обработки технических углей позволяют получать активные угли, удельная поверхность которых может достигать 1000 на 1 г. Активные угли — прекрасные гидрофобные адсорбенты они поглощают углеводороды, газы, примеси солей металлов (М +). Свойства угля адсорбировать растворенные вещества открыл в конце XVIII в. Т. Е. Ловиц. [c.286]

    Нитрат калия KNO3 (минерал калийная селитра)-белые кристаллы, очень горькие на вкус, низкоплавкие (г л = 22g °с). Хорошо растворим в воде (гидролиз отсутствует). При нагревании выше температуры плавления разлагается на нитрит калия KNO2 и кислород О2, проявляет сильные окислительные свойства. Сера и древесный уголь загораются [c.167]

    В качестве исходного материала для получения угля служат древесные породы, реже кости, кровь и др. Для специальных надобностей применяют сажу, получаем>ю сжиганием углеводородов, терпенов п других веществ. Различают животный и древесный уг.пи. Животный уголь СагЬо ani-inalis получают прокаливанием костей животных без доступа воздуха — этот сорт угля в настоящее время в медицине не применяют. Древесный уголь — arbo ligni получают при сухой перегонке лиственных пород дерева без доступа воздуха прп этом образуются и летучие продукты, которые улавливают уголь остается в перегонном аппарате. Далее уголь подвергают активированию, с целью усиления его адсорбционных свойств. Часто акт[ -вирование производят прокаливанием угля в струе водяного пара npi[ 800° иногда уголь предварительно обрабатывают растворами солен, например хлористым цинком, магнием илн другими, а затем прокаливают. Полученный таким путем уголь тщательно очищают от примесей промыванием водой нли кислотами и затем высушивают. [c.58]

    В области низких температур реакция ускоряется в присутствии таких неспецифических катализаторов, как древесный уголь, силикагель и алюмогель, обладающих высокими адсорбционными свойствами. Кажущаяся энергия активации на этих катализаторах имеет отрицательное значение. Согласно Борескову и Шогам [105], повы-щение скорости окисления N0 кислородом в присутствии указанных катализаторов вызвано или ростом числа тройных столкновений, или повышением количества димерных молекул N2O2 в адсорбированном слое. Катализ такого типа может быть назван физическим [ИЗ]. [c.69]

    В качестве фильтрующего материала используют активированный уголь, кизельгур, обрезки нейлона (перлона), древесный уголь и др. Фильтрацию могут обеспечить хлопья асбеста в смеси с хлопьями целлюлозы, которые дают компактное и ровное покрытие фильтра, большую фильтрующую поверхность. Как правило, на 1 м фильтрующей поверхности требуется 100—200 г асбеста. Асбест не обладает адсорбционными свойствами, но перекрывает поры бумаги и фильтрующей ткани, уменьшая их, способствует задержке взвешенных в электролите мелких частиц. Хлопья целлюлозы редко используют отдельно. Ее преимущест-ство — возможность фильтрации электролита, содержащего фтор. [c.237]

    Начало использования угля археологи относят к каменному веку (т.е. до 2 млн лет назад). Греческий философ Аристотель описал некоторые физические свойства угля, сравнивая его с древесным углем. В 325 г. до н.э. ученик Аристотеля Теофаст называет угли горячими камнями - антраксом (откуда и появилось название антрацит ) - и описывает свойства, а также известные в то время месторождения угля. Уголь применяли в качестве бытового топлива с XIII в. сначала в Бельгии, а затем и в других европейских странах. [c.14]

    Большинство активированных углеродных носителей, в частности древесный уголь, имеют развитую пористую структуру и значительную удельную поверхность. Однако они не обладают молекулярно-ситовыми свойствами, так как размер их пор слишком велик и неоднороден. Тримм и Кунер [164] онисали ряд углеродных молекулярных сит, имеющих однородную пористую структуру с порами среднего диаметра 0,4—0,6 нм. Эти молекулярные сита получали карбонизацией при 970—1070 К различных термореактивных органических полимеров в чистом виде или введенных в активный уголь. Авторы работы [164] пришли к выводу, что поры имеют щелевидную форму и что наилучшие результаты дает, но-видимому, полифуриловый спирт. Нагревание при температуре выше 1070 К приводит [c.94]

    Рудаков, Шестаева и Иванова [149] изучали влияние структуры поверхности твердого катализатора на направление реакции. Было установлено, что серная и фосфорная кислоты, изомеризующие пииен почти исключительно в моноциклические терпены, после ианесения иа поверхность некоторых каталитически неактивных носителей начинают изомеризовать его и в камфен. При этом было показано, что соотношение между образующимися при реакции моноциклическими терпенами и суммой камфена и фенхенов зависит не от природы кислот, нанесенных на поверхность носителя, а от специфических свойств самого носителя. Например, выход камфена при каталитической изомеризации пинена под влиянием сериой, фосфорной кислот и алюмосиликата, нанесенных на поверхность каталитически неактивной двуокиси кремния, совершенно одинаков. Однако выход камфена возрастает после нанесения серной и фосфорной кислот на двуокись титана и падает после нанесения фосфорной кииюты иа древесный уголь (табл. 17). Это показывает, что образование тех или иных продуктов реакции определяется ие только способностью твердого катализатора отщеплять протон, но и структурой его поверхности. [c.56]

    Давно известно, что пористые твердые тела могут поглощать довольно больщие количества газа. Уже в 1777 г. Фонтана [1] заметил, что свежеобожженный древесный уголь, охлажденный под ртутью, обладает свойством поглощать различные газы в объеме, превосходящем в несколько раз его собственный. В том же году Шееле [2] отметил, что воздух , выделенный углем при нагревании, вновь поглощается им при охлаждении. Шееле пишет, что поглощенный углем воздух занимал объем в восемь раз больший, чем уголь . [c.9]

    Кроме того, все большее распространение получают масс-опектрометры, основанные на использовании различия масс молекул и атомов различных вещ,еств, и хроматографы, в которых сложные газовые смеси разделяются вследствие различия скоростей движения компонентов. Действие хроматографов основано на сорбционном способе разделения пробы газовой смеси на компоненты при пропускании ее совместно с потоком вспомогательного газа (газа-носителя) через слой поглощающего вещества (сорбента) и поочередном измерении содержания каждого компонента (электрическим методом). Применяются два вида хроматографии адсорбционная и распределительная. В первом случае разделение газовой смеси основывается на различии адсорбционных свойств ее компонентов и происходит в колонке, заполненной твердым пористым веществом (адсорбентом), в качестве которого часто применяют мелкий активированный древесный уголь, силикагель и алюмогель. Во втором случае процесс разделения смеси связан с распределением ее компонентов по зонам в результате различной растворимости отдельных газов в жидкости (растворителе), равномерно нанесенной на инертное твердое тело (носитель), заполняющее колонку. Растворителем обычно служит дибутилфталат, а носителем— силикагель. В обоих случаях, газом-носителем является азот или воздух. Адсорбционная хроматография находит применение для разделения смеси низкокипящих веществ (Иг, СО, СН4 и др.), а распределительная — высококппя-щих, таких, как этилен С2Н4, этан С2Н6 и др. [c.77]

    Физические и химические свойства углерода. В виде простых веществ углерод встречается в природе в трех аллотропных модификациях алмаза, графита и карбина. Все они представляют собой гомоатомные соединения углерода с различным кристаллохимическим строением. В отличие от алмаза и графита карбин был вначале получен синтетически, а потом найден в природе (минерал чаоит — вкрапления карбина в природном графите). Так называемый аморфный углерод (сажа, древесный и костяной уголь и др.) не является самостоятельным аллотропным видоизменением углерода, а состоит из мельчайших разноориентированных кристалликов графита. [c.358]


Смотреть страницы где упоминается термин Уголь древесный свойства: [c.682]    [c.384]    [c.9]    [c.4]    [c.321]    [c.358]    [c.285]    [c.7]    [c.158]   
Производство сероуглерода (1966) -- [ c.65 , c.67 , c.85 ]




ПОИСК





Смотрите так же термины и статьи:

Древесный пок

Древесный уголь



© 2025 chem21.info Реклама на сайте