Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбент гидрофобные

Рис. 10.10. Изотерма поверхностного избытка (Г) в растворах поверхностно-активного вещества. Структура поверхностного слоя а — чистый растворитель б — ненасыщенный мономолекулярный слой ПАВ в — насыщенный мономолекулярный слой ПАВ. ный уголь и силикагель. Поглощающая способность угля подмечена еще в ХУП веке. Однако лишь в 1915 г. Н. Д. Зелинский разработал способ получения активных углей, предложив их в качестве универсальных поглотителей отравляющих веществ, и совместно с Э. Л. Кумантом сконструировал угольный противогаз с резиновой маской. Один из первых способон активирования древесного угля состоял в обработке его перегретым паром для удаления смолистых веществ, образующихся при сухой перегонке древесины и заполняющих поры в обычном угле. Современные методы получения и т .следования активных углей в нашей стране разработаны М. М. Дз бининым. Удельная поверхность активных углей достигает 1000 на грамм. Активный уголь является гидрофобным адсорбентом, плохо поглощает пары воды и очень хорошо — углеводороды. Рис. 10.10. <a href="/info/778107">Изотерма поверхностного</a> избытка (Г) в <a href="/info/1482728">растворах поверхностно-активного вещества</a>. <a href="/info/4510">Структура поверхностного слоя</a> а — чистый растворитель б — ненасыщенный <a href="/info/4461">мономолекулярный слой</a> ПАВ в — насыщенный <a href="/info/4461">мономолекулярный слой</a> ПАВ. ный уголь и силикагель. Поглощающая способность угля подмечена еще в ХУП веке. Однако лишь в 1915 г. Н. Д. <a href="/info/154">Зелинский</a> разработал <a href="/info/148966">способ получения</a> активных <a href="/info/1013128">углей</a>, предложив их в качестве универсальных поглотителей отравляющих веществ, и совместно с Э. Л. <a href="/info/677794">Кумантом</a> сконструировал угольный <a href="/info/93622">противогаз</a> с <a href="/info/955583">резиновой</a> маской. Один из первых способон активирования древесного угля состоял в обработке его <a href="/info/912237">перегретым паром</a> для удаления <a href="/info/758060">смолистых веществ</a>, образующихся при <a href="/info/83829">сухой перегонке древесины</a> и заполняющих поры в обычном угле. <a href="/info/658568">Современные методы получения</a> и т .следования активных <a href="/info/1013128">углей</a> в нашей стране разработаны М. М. Дз бининым. <a href="/info/1443951">Удельная поверхность активных</a> <a href="/info/1013128">углей</a> достигает 1000 на грамм. <a href="/info/4303">Активный уголь</a> является гидрофобным адсорбентом, плохо поглощает <a href="/info/1450290">пары воды</a> и очень хорошо — углеводороды.

    Адсорбционные методы очистки применяют для удаления истинно растворимых органических соединений из сточных вод. Широкое применение нашел адсорбционный метод очистки с использованием обычных активных углей и некоторых других сорбентов, в частности активных углей, получаемых из отходов производства феноло-формальдегидной смолы, торфа, а также синтетических высокопористых полимерных адсорбентов. Активные угли высокопористые адсорбенты с удельной поверхностью от 800 до 1500 м2/г. Адсорбционное поглощение растворимых органических загрязнений активным углем происходит в результате дисперсионных взаимодействий между молекулами органических веществ и адсорбентом. Активный уголь гидрофобный адсорбент, т. е. обладает сродством к гидрофобным молекулам органических веществ. Чем выше энергия гидратации адсорбата, тем хуже он извлекается из воды адсорбентом. Сказанное, в частности, подтверждается тем, что активные угли хорошо сорбируют такие гидрофобные соединения, как алифатические и ароматические углеводороды, их галоген- и нитрозамещенные соединения и другие и значительно хуже гидрофильные соединения, например низшие спирты, гликоли, глицерин, ацетон, низшие карбоновые кислоты и некоторые другие вещества. [c.95]

    Адсорбционная способность активного угля по отношению к различным примесям и в различных растворителях неодинакова. Являясь неполярным гидрофобным адсорбентом, он хорошо поглощает растворенные вещества из водных растворов и полярных жидкостей — спиртов, сложных эфиров, амидных растворителей. Для удаления примесей из малополярных и, особенно, неполярных, например углеводородных растворителей, в которых активный уголь не всегда достаточно эффективен, можно рекомендовать использование активного оксида алюминия или порошкообразного силикагеля. [c.116]

    Адсорбенты обычно делят на две основные группы полярные (гидрофильные) и неполярные (гидрофобные). Следует помнить, что адсорбционное сродство полярных ве- [c.149]

    Область применения тонкослойной хроматографии практически безгранична, что объясняется возможностью большого выбора слоев различных сорбентов. Для разделения полярных веществ применяют слои адсорбентов, для гидрофильных — распределительную хроматографию на целлюлозе или силикагеле, для гидрофобных — импрегнированные слои (обращенные фазы). Можно применять также ионообменную или гель-хроматографию в тонком слое. Метод тонкослойной хроматографии в настоящее время применяют в основном для целей качественного анализа. Количественное определение возможно в такой же степени, как и в бумажной хроматографии. При проведении определений можно работать с очень небольшими количествами веществ, разделение проходит быстро и с умеренными затратами. Тонкослойную хроматографию в связи с этим можно применять для предварительных опытов по выбору фаз для разделения больших количеств веществ методом колоночной хроматографии. [c.361]


    Наиболее эффективными адсорбентами ПАВ из водных растворов являются гидрофобные адсорбенты — активные угли. Угли обладают достаточно жесткой пористой структурой, меха- [c.215]

    В частности, гидрофобность активного угля обусловлена тем, что силы внутреннего сцепления воды больше силы сцепления между водой и углем. Этим же объясняется и уменьшение адсорбции на угле с ростом полярности адсорбата — явление, противоположное тому, которое наблюдается при адсорбции на полярных адсорбентах. [c.235]

    Различные типы адсорбентов проявляют неодинаковую селективность по отношению к различным соединениям. Трудно установить прямую связь между адсорбируемостью вещества и его химическим строением, а также между химическим строением адсорбента и его адсорбционной емкостью. Поэтому общепринятым считается деление адсорбентов на две основные группы полярные (гидрофильные) — силикагель, оксид алюминия, искусственные и природные силикаты неполярные (гидрофобные) — активированный уголь, кизельгур, диатомит. На полярном адсорбенте энергия адсорбции возрастает с увеличением размеров молекул адсорбированного вещества, причем энергия адсорбции тем выше, чем больше полярность адсорбированного вещества. Неполярные адсорбенты не проявляют селективности по отношению к полярным молекулам. [c.54]

    Методом угольных реплик на электронном микроскопе было установлено глобулярное строение органополисилоксановых адсорбентов. Порами в таких адсорбентах являются зазоры между глобулами. Этот факт доказал дисперсное строение и наличие развитой пористой структуры в синтезированных полимерных адсорбентах. На основании выявленных закономерностей при исследовании генезиса образования органополисилоксановых гелей нами были разработаны способы синтеза пористых конденсированных структур гелей гидрид-, метил-и этилполисилоксанов [1—3]. Путем гелеобразования, промывки и сушки были получены твердые пористые кремнийорганические полимеры с весьма развитой удельной поверхностью до 500 м /г. Эти адсорбенты гидрофобны, не набухают и не растворяются в органических растворителях. [c.78]

    Если поверхность адсорбента гидрофильна, то молекулы своей полярной группой должны обращаться в сторону адсорбента, а неполярной—углеводородной группой—в сторону растворителя если же поверхность адсорбента гидрофобна, то ориентация молекул должна быть обратной неполярным концом—к адсорбенту, а полярным—к растворителю. [c.100]

    Кривые для суммарных смол, выделенных из остаточного рафината, имеют больший тангенс угла наклона, чем для суммарных смол из депарафинированного масла и петролатума. Следовательно, при наличии в растворе полярных молекул ПАВ (присадок и смол) следует учитывать увеличение адсорбционной активности вследствие дополнительных электростатических сил взаимодействия ПАВ между собой и с поверхностью кристалла (адсорбента). При охлаждении такой системы с момента образования зародышей твердой фазы начинается процесс адсорбции смол и присадки на поверхности кристаллов. Наиболее вероятен в данном случае усложненный механизм построения адсорбционного слоя поверхностно-активных веществ на неоднородной поверхности твердой фазы. Насыщенный адсорбционный слой ПАВ для неоднородной в энергетическом отношении поверхности кристаллов, какой следует считать большинство реально существующих поверхностей твердых сорбентов в природе, может быть различной толщины на разных участках поверхности. При добавлении малых количеств присадки происходит адсорбция их молекул на наиболее активных участках гидрофобной поверхности кристаллов твердых углеводородов, при этом дифильные молекулы ПАВ ориентируются полярной частью в раствор, а углеводородным радикалом — на поверхности частиц твердых углеводородов. Это приводит к совместной кристаллизации молекул присадки и твердых углеводородов, которая способствует образованию крупных агрегированных структур, что, в свою очередь, увеличивает скорость фильтрования суспензии остаточного рафината. С увеличением содержания ПАВ в растворе одновременно с адсорбцией молекул на менее активных участках поверхности кристаллов происходит образование второго слоя молекул с обратной их ориентацией, т. е. полярной частью на поверхность твердой фазы. При этом присадка и смолы адсорбируются по всей поверхности кристаллов, не внося существенных изменений в их форму, но препятствуя росту кристаллов, а это снижает скорость фильтрования суспензии. [c.173]

    Процесс снятия гидрофобных растворителей со слоя активного угля ири десорбции водяным паром изучали на примере гексана [4]. Исследования показали, что, как и в случае гидрофильных растворителей [4], гексан десорбируется сразу со всего слоя адсорбента, причем десорбция сопровождается одновременной адсорбцией водяного пара. В начальной фазе процесса гексан вытесняется из лобовых слоев в замыкающие, активность их по гексану превосходит первоначальную примерно на 10%- Это свидетельствует о том, что десорбция гидрофильных и гидрофобных растворителей из углей протекает по одному и тому же механизму. Торможение процесса десорбции, вероятно, можно объяснить замедлением диффузии водяного пара внутрь пор адсорбента, заполненных растворителем. [c.92]


    К числу веществ, характеризующихся особенно сильным и устойчивым понижением при адсорбции на поверхностях их смачиваемости водой, относятся кремнийорганические полисилоксановые полимеры. Эти соединения являются поверхностно-активными, состоящими из полярных силоксановых группировок Si — О и неполярных углеводородных радикалов. Полисилоксаны, как и другие поверхностно-активные вещества, адсорбируясь на поверхности гидрофильного твердого тела, обращаются к нему своими полярными группами. Эта ориентация может быть усилена (в случае кремнийорганических соединений почти всегда) за счет химического взаимодействия полярных групп адсорбата с полярными группами адсорбента. Гидрофобные углеводородные радикалы при такой ориентированной адсорбции оказываются, как уже отмечалось, ориентированными наружу так, что адсорбционный слой напоминает собой щетку. Благодаря этому гидрофильное ранее твердое тело, покрытое гидрофобной щеткой , становится более гидрофобным и тем больше, чем выше концентрация адсорбированного вещества. По мере увеличения последней краевой угол воды на данной поверхности может дойти до 90° и даже стать тупым. Кроме того, на поверхностях, покрытых гидрофобизующим ориентированным адсорбционным слоем, резко увеличивается гистерезис смачивЗния, что еще больше понижает смачивание таких поверхностей водой. [c.22]

    В адсорбции из растворов на поверхности твердых тел, как и на границе раствор — газ, участвуют по меньшей мере два компонента. Адсорбция каждого из них зависит от адсорбционной способности и концентрации другого компонента чем хуже адсорбируется один компонент, тем легче происходит адсорбция другого. Поэтому для адсорбции различных веществ из водных растворов применяются гидрофобные адсорбенты (активированные угли), а из неводных — гидрофильные (минеральные адсорбенты). [c.53]

    Поэтому для адсорбции поверхностно-активных веществ, растворенных в полярной жидкости, например в воде, применяют неполярные гидрофобные адсорбенты (уголь), для адсорбций же >13 неполярных жидкостей (СеНе, ССЦ и др.) — полярные гидрофильные адсорбенты (силикагель). [c.106]

    Основываясь на правиле, уравнивания полярностей, можно заранее сказать, что поверхностно-активное вещество должно адсорбироваться в поверхности раздела твердое тело — жидкость тем больще, чем больше будет оказываемое обеими фазами ориентирующее влияние на адсорбируемые молекулы. При этом избыток свободной поверхностной энергии будет меньше в том случае, когда молекулы своей полярной частью будут обращены к адсорбенту, если его поверхность гидрофильна (смачивается водой), а углеводородной частью — в сторону неполярного или малополярного растворителя. Для адсорбентов с гидрофобной (несмачиваемой водой) поверхностью ориентация полярных молекул должна происходить в обратном порядке, т. е. углеводородной частью в сторону адсорбента и полярной группой в сторону растворителя (например, воды). [c.290]

    При выборе растворителей руководствуются правилом, согласно которому неполярные (гидрофобные) адсорбенты, как, например, активированные угли, адсорбируют из полярных растворителей, особенно из воды и спирта, значительно лучше, чем из неполярных полярные же (гидрофильные) адсорбенты хуже адсорбируют из полярных растворителей и лучше адсорбируют из неполярных. [c.21]

    Поэтому неполярные гидрофобные твердые адсорбенты, такие, как уголь и сажа, должны хорошо адсорбировать растворенные вещества из водных растворов вода (полярный растворитель) плохо смачивает эти адсорбенты. [c.67]

    Громадное значение имеет степень развития поверхности адсорбентов. Современные активные угли обладают поверхностью до 1000 м г. Они имеют сильно разветвленную систему пор. Угли являются гидрофобными адсорбентами, т. е. веществами, плохо смачивающимися водой. Они прекрасно адсорбируют растворенные в воде вещества. Наоборот, гидрофильные адсорбенты (хорошо смачиваемые водой) хорошо поглощают пары воды и растворенные вещества из неполярных сред (из углеводородных жидкостей). К таким адсорбентам относятся силикагель, молекулярные сита (некоторые типы алюмосиликатов) и др. В моющем действии веществ, во флотационных процессах обогащения руд и в других случаях смачивание играет большую роль. Смачивание твердых тел сильно зависит от состояния поверх- [c.171]

    Следовательно, гидрофобные адсорбенты (уголь, тальк) лучше адсорбируют органические (дифильные) вещества из водных растворов, а гидрофильные адсорбенты (силикагель, глины) лучше адсорбируют их из неполярных и слабополярных жидкостей. [c.277]

    На неполярных адсорбентах из сильно полярных элюентов, например, водно-спиртовых смесей, сильнее адсорбируются молекулы, содержащие неполярные углеводородные цепи, циклы или группы (см. рис. 14.4 и 14.15). В основном эти молекулы удерживаются на неполярной (гидрофобной) поверхности за счет адсорбции их неполярных частей, т. е. за счет неспецифического межмолекулярного взаимодействия с адсорбентом, как это было показано в разделе 16.5 при адсорбции ароматических углеводородов из водных растворов на гидроксилированной поверхности кремнезема. Полярные же группы молекул дозируемого вещества при адсорбции на неполярном адсорбенте из полярного элюента уменьшают удерживание, так как их межмолекулярное взаимодействие с полярными грушпами молекул элюента, влияя на их ориентацию, ослабляет межмолекулярное взаимодействие молекул дозируемого вещества с адсорбентом и облегчает их возвращение в объем элюента. Таким образом, в этом случае удерживание в основном определяется, во-первых, неспецифическим межмолекулярным взаимодействием молекул дозируемого вещества с адсорбентом и, во-вторых, специфическим межмолекулярным взаимодействием этих молекул с элюентом, причем последнее уменьшает удерживание. Этот молекулярный механизм удерживания надо иметь ввиду, так как распространенный в литературе по жидкостной хроматографии термин обращеннофазная хроматография не передает существа дела. Действительно, из лекции 16 следует, что органические вещества, во-первых, удерживаются из водных растворов и на полярном адсорбенте (гидроксилированной поверхности силикагеля) и, во-вторых, порядок выхода органических веществ может быть изменен при изменении состава элюента как на полярном, так и неполярном адсорбентах. [c.307]

    Он имеет сферическую поверхность 175—400 м к (исследовали аэросил, имеющий 5уд = 175 м г). На поверхности аэросила имеются активные центры различной природы [428], в частности гидроксильные группы. Вместе с тем аэросил является более гидрофобным адсорбентом, чем, например, тонко размолотый кварц и на его поверхности в водных дисперсиях не возникает гелеобразного слоя 1429]. [c.181]

    Все адсорбенты можно разбить на два основных типа гидрофильные, хорошо смачивающиеся водой, и гидрофобные, которые не смачиваются водой, но смачиваются неполярными органическими жидкостями. К гидрофильным адсорбентам относятся силикагель, глины, пористое стекло. Их не- следует применять при адсорбции растворенных веществ из водных растворов, так как они лучше адсорбируют растворитель — воду. Эти адсорбенты целесообразнее использовать при адсорбции из неводных растворов. Гидрофобные адсорбенты — активный уголь, графит, тальк — хорошо адсорбируют вещества из водных растворов. [c.169]

    Большое значение для адсорбции ионов имеет природа адсорбента. Ионы обычно адсорбируются на поверхности твердых тел, построенных из ионов (с ионной кристаллической решеткой) или из полярных молекул, т. е. на гидрофильных адсорбентах. На гидрофобных адсорбентах электролиты или совсем не адсорбируются, или адсорбируются очень плохо. [c.172]

    Модифицирование силикагелей приводит к изменению их адсорбционных свойств в частности, получен силикагель — гидридполисилоксан, который является гидрофобным адсорбентом. Гидрофобность гидридполисилоксана, негорючесть и его достаточно высокая адсорбционная активность по парам органических веществ позволяют использовать его для целей очистки промышленных выбросов и рекуперации органических веществ. [c.532]

    Как показали исследования, природу твердой поверхности адсорбент,ч можно изменить гидрофильную поверхность сделать гидрофобной, а гидрофобную — гидрофильной. Для этого на твердой поверхности адсорбента создают адсорбционный слой из поверх-НОСТНО-а (ТПВНЫ ( веществ, например мыла, жирных кислот. Если гидрофильную поверхность обработать раствором жирной кислоты, поверхность станет гидрофобной. Молекулы кислоты, ориентируясь таким образом, что их полярные группы обращены к поверхности адсорбента, а углеводородные радикалы — в воздух, адсорбируются [c.360]

    Обычно разность в гидрофобности поверхности частиц ценного минерала и пустой породы сравнительно невелика. Поэтому для повышения эффективности флотации почти всегда применяют так называемые коллекторы, или собиратели. В качестве коллекторов используют органические вещества с дифильной молекулой, способные адсорбироваться на поверхности частиц ценного минерала таким образом, что полярная часть молекулы обращается к адсорбенту, а углеводородный радикал — наружу. В результате этого гидрофобность частиц минерала возрастает и флотационный процесс протекает интенсивнее. Наиболее часто в качестве коллекторов применяют ксантогенаты RO—С< (где R — углеводородный радикал, М — щелочной металл). Имеются данные, что ксантогенаты не просто адсорбируются поверхностью частиц сернистых металлов, но вступают с ними в химическое взаимодействие. [c.166]

    В табл. 16.1 представлены структурные формулы и удерживаемые объемы для 15 углеводов при 30°С на поверхности силикагеля, которая была покрыта пиперазином адсорбционным способом. Из таблицы видно, что различие в удерживании углеводов прежде всего связано с межмолекулярным взаимодействием гидроксильных групп молекул углеводов с аминогруппами на адсорбенте. В присутствии адсорбированного пиперазина удерживание возрастает с увеличением числа гидроксильных групп в молекуле моносахариды выходят раньше, чем дисахариды, а дисахариды раньше, чем трисахариды. Кроме того, важно и геометрическое строение молекул углеводов, в частности, расположение гидроксильных групп, что дает возможность, разделить изомерные молекулы углеводов. Большое влияние на V/ оказывает общая конфигурация молекулы. Более разветвленные молекулы сахаридов выходят из колонны раньше. Из-за наличия гидрофобной метильной группы слабее всего удерживается рамноза, представляющая собой метилпентозу (дезоксиманнозу). [c.302]

    С целью уменьщения адсорбции растворителя при молекулярной сорбции из водных растворов обычно при.меняют гидрофобный адсорбент — активный уголь, а при сорбции из неполярных растворите.тей (углеводородов) гидрофильный адсорбент — силикагель. Адсорбция протекает по активным центрам адсорбента, часто мономолекулярно и высокоизбирате.тьно. Изотермы молекз лярной адсорбции из растворов, так же как газов и паров, имеют вид кривой, приведенной на рис. 10.10. Десорбцию, осуществляемую с помощью жидкостей, обычно называют элюцией, а жидкости или растворы, применяе.мые для этих целей, элюентами. [c.302]

    Кроме ископаемых углей важнейшими техническими сортами угля являются кокс, древесный уголь, сажа, костяной уголь. Различные специальные методы обработки технических углей позволяют получать активные угли, удельная поверхность которых может достигать 1000 на 1 г. Активные угли — прекрасные гидрофобные адсорбенты они поглощают углеводороды, газы, примеси солей металлов (М +). Свойства угля адсорбировать растворенные вещества открыл в конце XVIII в. Т. Е. Ловиц. [c.286]

    Толщина слоя такой прочно адсорбированной воды очень невелика. Она неодинакова для адсорбентов с различной по химическому составу поверхностью. Некоторые минералы и материалы на основе силикатов в соответствии с их высокой гидрофильностью обладают той способностью в большей степени минералы карбонатных пород—несколько в меньшей степени еще меньше она для сульфи -дов, а поверхность гидрофобных органических соединений, вероятно, ею практически не ооладает, приближаясь в этом отношении к восстановленной графитиро-ванной саже (см. рис. 18). [c.36]

    Сравнение органических пористых полимеров с цеолитами. Значительным преимуществом многих органических адсорбентов является гидрофобность их остова (см. рис. 6.10). Это позволяет применять, например, аниониты для поглощения SO2 и СО2 из влажного воздуха без его предварительной осушки. При увлажнении анионита АН-221 (сополимера СТ с ДВБ, модифицированного прививкой групп —NH H2 H2NH2) адсорбция СО2 даже несколько увеличивается за счет большей доступности аминогрупп в результате некоторого набухания, в то время как при увлажнении катионированного цеолита адсорбция СО2 рЛко уменьшается. Таким образом, если в качестве адсорбента для поглощения СО2 применять цеолит NaX, то сначала воздух надо осушить, в противном случае цеолит будет адсорбировать преимущественно воду (молекула воды имеет большой электрический момент диполя при очень малых размерах), а не СО2 (молекула СО2 имеет только электрический момент квадруполя при значительно больших размерах, см. табл. 2.1). В случае же анионита влажность воздуха не имеет значения. [c.125]

    Перейдем теперь к разделению более сложных полярных молекул на неполярном адсорбенте из полярного элюента. Важной задачей является разделение таких лекарственных препаратов, как сильно действующие сердечные тликозиды, молекулы которых состоят из агликона — стероидной жесткой и обычно более гидрофобной части молекулы с присоединенным к ней лактонным кольцом, и гликона — конформационно подвижной и более гидрофильной сахарной части, связанной со стероидным остовом кислородным мостиком (см. формулу цимарина в разделе 14.7). При применении силикагеля, поверхность которого модифицирована реакцией с дифенилдихлорсиланом (см. рис. 5.7), достигнуто полное разделение восьми сердечных гликозидов (рис. 17.7) из полярного элюента этанол — вода (40 60) в порядке уменьшения полярности гидрофильности ) молекулы первым выходит О-строфантин (5 гидроксильных групп в стероидной части молекулы и 3 гидроксильные группы в моносахариде, всего 8 групп ОН в молекуле) и последним олеандрин (одна гидроксильная группа в стероидной части и одна в моносахариде, всего только 2 группы ОН в молекуле).  [c.319]

    В процессах адсорбции большое значение имеет характер частиц соприкасающихся фаз — полярный ли он или неполярный. Адсорбенты с неполярной поверхностью плохо взаимодействуют с полярными молекулами воды (вода не смачивает такие поверхности), почему они получили название гидрофобных (греч. hydor — вода и phobos — страх, неприязнь). Типичным представителем адсорбентов с гидрофобной поверхностью является уголь. [c.108]

    При взаимодействии yjosaHHbix адсорбентов с неполярной (гидрофобной) жидкостью, например бензолом, картина обратная бензол хорошо смачивает уголь и не смачивает силикагель. [c.109]

    Важной количественной характеристикой энергетики смачивания, а вместе с тем и характера твердой поверхности (ее гидрофильности и гидрофобности, олеофильности и олеофобности) служит теплота смачивания — количество энергии, выделяемое при смачивании единицы поверхности твердого тела, равное разности полных поверхностных энергий границ раздела фаз твердое тело — газ и твердое тело — жидкость. Эта величина особенно широко используется для характеристики смачивания тонкопористых тел и порошков. По Ребиндеру, отношение теплот смачивания твердых поверхностей водой Жа) и углеводородом Жм) служит характеристикой гидрофильности поверхности для гидрофильных поверхностей для гидрофобных — Р< 1. Так, например, для активированного угля рл i0,4 (гидрофобная поверхность), для кварца рд 2 (гидрофильная), для крахмала р 20 (сильно гидрофильная). При этом в обоих случаях при контакте с водой и углеводородом тепловой эффект смачивания может быть отнесен к единице массы порошка (адсорбента), и, таким образом, отпадает необходимость измерять поверхность исследуемого порошка. [c.98]

    В общем случае можно считать, что гидрофобные адсорбенты (уголь, тальк) должны лучше адсорби- ровать органические (дифильные) вещества из водных растворов. Гидрофильные адсорбенты (силикагель, глины) должны лучше адсорбировать их из неполярных или слабоиолярных жидкостей. [c.171]


Смотреть страницы где упоминается термин Адсорбент гидрофобные: [c.264]    [c.92]    [c.323]    [c.323]    [c.877]    [c.359]    [c.81]    [c.261]    [c.301]    [c.306]   
Физическая и коллоидная химия (1988) -- [ c.169 , c.171 ]

Основы физической и коллоидной химии Издание 3 (1964) -- [ c.277 ]




ПОИСК







© 2024 chem21.info Реклама на сайте