Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пептиды идентификация

    Строение коротких пептидов определяют последовательным отщеплением и идентификацией концевых аминокислот упомянутыми выше методами, а большие пептиды подвергают дополнительному расщеплению с последующими разделением и определением строения. Затем путем сложного сопоставления структуры различных участков пептидной цепи воссоздают полную картину расположения аминокислот в ма- [c.376]


    Двумерное разделение пептидов, наиример гидролизатов белков, на целлюлозных н силикагелевых пластинках, где в одном (чаш е первом) направлении используется электрофорез в тонком слое (ТСЭ) при кислом pH буфера, а во втором — распределительная ТСХ. Оно применяется как для целей идентификации и сопоставления родственных белков (например, для выявления мутационных или патологических изменений), так и в качестве препаративного метода для последуюш,его анализа аминокислотной последовательности в пептидах. [c.460]

    Второй раздел практикума ставит своей целью познакомить студентов с особенностями выделения, фракционирования, идентификации и количественного определения различных природных азотсодержащих < оединений. белков, пептидов, аминокислот, нуклеиновых кислот, нуклеотидов и пр Предлагаемые экспериментальные работы включают аиболее широко используемые в лабораторной практике современные методы разделения и анализа этих соединений различные виды электрофореза, хроматографии, спектрофотометрии, колориметрии и др. Работа проводится как на готовых коммерческих препаратах высоко- и низкомолекулярных азотсодержащих соединений, так и на препаратах, выделяемых студентами из различных тканей лабораторных животных. [c.79]

    Полипептидные цепи при ферментативном гидролизе расщепляются на большое число сравнительно мелких пептидов, что затрудняет их разделение и идентификацию. Поэтому за последнее время все более широкое распространение приобретают методы химического расщепления пептидных связей, образованных аминокислотами, редко встречающимися в белках. Это позволяет получать ограниченное число крупных пептидов. [c.141]

    Реактив Сэнгера. 2,4-Динитрофторбензол. Применяется для идентификации N-koh-цевых аминокислот в пептидах. [c.413]

    Для больших пептидов Овчинников и Кирюшкин [132] рекомендовали применение комбинированного хромато-масс-спектрометрического метода идентификации дипептидов и обработку результатов анализа иа ЭВМ при использовании картотеки масс-спектров, содержащей данные для 400 возможных дипептидов. [c.373]

    В заключение раздела остановимся на двух вопросах, которые при обсуждении поэтапного метода конформационного анализа пептидов и белков, казалось бы, должны иметь первостепенное значение. Речь идет о принципах разбиения пептидной цепи на фрагменты и критерии отнесения конформационных состояний каждого рассчитываемого фрагмента к низкоэнергетическим, т.е. перспективным в последующем расчете более сложного участка пептидной цепи, и к высокоэнергетическим - неперспективным, исключаемым из расчета. Что касается первого вопроса, то постулируемая в теории структурной организации пептидов и белков согласованность ближних, средних и дальних взаимодействий не делает его принципиальным. Конечный результат в этом случае должен быть одним и тем же при любой схеме разбиения последовательности на фрагменты. Тем не менее разделение пептида на отдельные участки -ответственный момент конформационного анализа, поскольку от выбранной схемы существенным образом зависит объем вычислительных работ. Более того, заметный прогресс в расчете трехмерных структур высокомолекулярных белков можно ожидать при разработке метода априорной идентификации конформационно жестких и лабильных фрагментов аминокислотной последовательности. Обсуждение этого вопроса будет продолжено в конце книги после рассмотрения результатов расчета пептидов и белков. [c.232]


    Для определения строения белков разработан ряд методов, которые еще 20 лет тому назад были неизвестны, — хро матография, противоточное распределение и ионофорез в неподвижной среде. Благодаря указанным методам удалось получить белки в чистом виде и выделить их составные части— пептиды, аминокислоты и их производные. Эти методы характеризуются не только высокой эффективностью, но позволяют работать с количествами вещества порядка нескольких микрограмм. Следующим этапом явилась разработка химических методов идентификации аминокислот и пептидов, полученных расщеплением полипептида [266, 277, 320]. [c.164]

    Уже упоминалось, что высокоэффективная жидкостная хроматография при высоком дав.лении (ЖХВД) по.лучила очень широкое распространение главным образом в качестве экспресс-метода технологического контроля производства низкомолекулярпых природных (и неприродных) соединений. В исследованиях белков и нуклеиновых кислот ЖХВД играет пока бо.лее скромную, но заметную роль (фракционирование пептидов, идентификация аминокислот прц секвеннровании белков и др.). Далее мы увидим, что для исследо- [c.91]

    Теоретически этот процесс можно проводить многократно до полного определения последовательности аминокислот. Однако многократное отщепление концевых аминокислотных остатков приводит к усиливающемуся повреждению оставшейся пептидной цепи, и обычно можно отделять максимум шесть или семь остатков. Для определения последовательности аминокислот необходим метод идентификации фенилтиогидантоинов, получаемых в результате ступенчатой деградации пептидов. Идентификация и определение фенилтиогидантоинов иногда трудно осуществимы, и следует использовать метод отщепления , примененный, например, при определении структуры рибонуклеазы. После удаления Ы-концевой аминокислоты в виде фенилтиогидантоина оставшийся пептид гидролизуют и анализируют. Последовательность аминокислот в этом пептиде определяют по аминокислотным остаткам, сохраняющимся в нем после каждого отщепления N-кoнцeвoй аминокислоты. [c.31]

    I3.2.L6. Анализ ФТГ-производных аминокислот в продуктах отщепления t 0 Эдману. При аиализе более чем I нмоль исходного пептида идентификация ФТГ-произвоД 1ых обычных аминокислот, полученных в ходе ручного или автоматического определения последовательности по Эдману, являек я однозначной. При работе с количествами >1 нмоль образца примеси, вносимые из секвенаторных реактивов, обычно не влияют на ВЭЖХ. [c.415]

    С-Концы пептидных цепей определяются избирательным отщепле нием концевой аминокислоты с помощью специфического фермента — карбоксипептидазы и последующей идентификацией этой аминокислоты. Если макромолекула белка состоит из двух (или более) пептидных цепей, как в случае инсулина (см. рис. 53), то избирательно разрушают дисульфидные мостики окислением (например, надмуравьиной кислотой) и затем полученные полипептиды разделяют путем фракционирования на ионитах. Для определения последовательности расположения аминокислот в каждой полипептидной цепи ее подвергают частичному кислотному гидролизу и избирательному расщеплению с помощью ферментов, каждый из которых разрывает полипептидную цепь только в определенных местах присоединения какой-то одной определенной аминокислоты или одного типа аминокислот (основных, ароматических). Таким образом получают несколько наборов пептидов, которые разделяют, используя методы хроматографии и электрофореза. [c.376]

    Модификацией метода Эдмана является применение метилизотиоцианата вместо фенилизотиоцнаната. При этом Н-концевая аминокислота отщепляется в виде метил-тиогидантоина (В. М. Степанов, В. Ф. Кривцов, 1963). Дальнейшее весьма перспективное развитие метода Эдмана состоит в совмещении его с масс-спектрометрической идентификацией отщепляемых от пептида Н-концевых аминокислот в виде фенил- или ме-тилтиогидантоинов (Н. С. Вульфсон, В. М. Степанов, В. А. Пучков, А. М. Зякун 1963. 1964).— Прим. ред. [c.691]

    Дю Виньо и сотрудники основывались главным образом не на анализе концевых аминокислот, а на идентификации компонентов большого числа низших пептидов. Они исследовали также реакцию окисленного окситоцина с бромной водой, в результате которой обра- [c.695]

    ФТОР-2,4-ДИНИТРОБЕНЗОЛ, t,,n 27 С, i ., 137 °С/2 мм рт. ст. раств. в эф., бензоле, ацетонитриле, не раств. в воде. Реагент для идентификации оксисоединений и концевых аминогрупп в белках и пептидах по т-рам плавления продуктов взаимодействия фотометрии. определения тиолов, амшгов и фенолов с помощью р-ции Яновского и в УФ области (для производных тиолов Хмакс 480—570, производных аминов 450—580, производных фенолов 560—580). [c.638]

    Химические, физико-химические свойства белков и их структура определяются аминокислотным составом. Поэтому исследование аминокислотного состава является важным аналитическим методом характеристики этих соединений. Исследование аминокислотного состава белков и пептидов включает расщепление этих соединений до свободных аминокислот, разделение последних, их идентификацию и количественное определение. Изучению аминокислотного состава предшествует, как правило, определение однородности изучаемых препаратов. О чистоте препаратов белка судят на основании данных ульт-рацентрифугирования, электрофореза, в частности диск-электрофореза ) [c.122]


    В основе метода динитрофенилирования лежит реакция свободных ЫНг-групп белка или пептида с 2,4-динитрофторбензолом (ДНФБ) в щелочной среде, при которой образуются соответствующие динитрофенильные производные (ДНФ-производные). В реакцию с ДНФБ, кроме свободных а-ЫНг-групп, вступают также е-ННг-группа лизина, 5Н-группа цистеина, ОН-группы оксиаминокислот и имидазольный гетероцикл гистидина. ДНФ-производное белка или пептида подвергают полному кислотному гидролизу. Ы-концевые ДНФ-амино-кислоты экстрагируют из гидролизатов эфиром, отделяя их от свободных аминокислот и ДНФ-производных по другим функциональным группам аминокислот, которые растворимы в воде. Идентификацию [c.145]

    Образование А. используют для защиты аминогруппы и для идентификации первичных и вторичных аминов (преим. в виде ацетамидов и бензамидов), а также карбоновых к-т (в виде незамещенных А., анилидов, бензиламидов). Особое значение методы защиты NH -rpynnbi имеют в синтезе пептидов (см. Белки). [c.128]

    Наиб, распространение для определения N-концевых остатков находит данейльный метод. Его первая стадия-присоединение дансилхлорида (1-диметиламинонафталин-5-сульфохлорида) к непротонированной а-аминогруппе с образованием дансилпептида (ДНС-пептида) Затем последний гидролизуют 5,7 н. р-ром НС1 при 105°С, в результате чего освобождается N-концевая а-ДНС-аминокислота, к-рая обладает интенсивной флуоресценцией в УФ-области спектра для ее идентификации достаточно 0,1-0,5 нмоля в-ва. [c.250]

    Мол. ион пептида распадается в результате разрыва связей СН—СО, СО—NH, КН—СН и СН—К с образованием осколочных ионов соотв. А и Х , В и У , С и 2 , 8 и К (я-номер аминокислотного остатка в пептидной цепи), к-рые далее распадаются таким же образом. Общее кол-во пиков ионов в таком спектре может достигать неск. сотен. Кол-во фрагментов определяется строением исследуемой молекулы, запасом внутр. энергии мол. и осколочных ионов и промежутком времени между образованием иона и его детектированием. Поэтому при интерпретации масс-спектров необходимо учитывать как условия измерений (энергию ионизирующих электронов, ускоряющее напряжение, давление паров в ионном источнике, т-ру ионизац. камеры), так и конструктивные особенности прибора. При макс. стандартизации условий измерений удается получать достаточно воспроизводимые масс-спектры. Сравнение масс-спектра исследуемой системы со спектром, имеющимся в каталоге,-наиб, быстрый и простой способ структурного анализа, идентификации в-в при определении загрязнения окружающей среды, контроле продуктов питания человека и животных, изучении процессов метаболизма лек. препаратов, в криминалистике и т.д. Однако идентификация лишь на основании масс-спектра не может быть однозначной, напр, не Все изомерные в-ва образуют различающиеся масс-спектры. [c.662]

    Динитрофеннлы1ые производные амииокислот находят широкое применение в качестве свидетелей для идентификации аминокислот при хролтатографическолг анализе гидролизатов белков и пептидов. Они представляют собой желтые кристаллические вешоства, обладающие больилои светочувствительностью. Хранить их следует в темноте или в посуде из оранжевого стекла. [c.113]

    Как MALDI, так и ионизацию электрораспылением можно легко сочетать с ферментативным расщеплением белков для последующего определения их параметров. После расщепления белка полученная смесь целиком помещается в MALDI-спектрометр и анализируется. В наиболее благоприятных случаях можно определить массу более чем 90% пептидных фрагментов. Этот подход можно использовать для определения изменений в белке, например при определении параметров рекомбинантных белков или для идентификации ковалентно-связанных модификаторов белка. Масс-спектрометрия с ионизацией электрораспылением, вследствие того, что она легко сочетается как с ЖХ-МС, так и тандемной масс-спектрометрией, может быть источником еще и дополнительной информации о последовательности аминокислот в белке. При химической ионизации пептид фрагментируется на два комплементарных ряда ионов, которые имеют последовательности аминокислот, начиная с С- и N-терминальных атомов пептида. Тандемная масс-спектрометрия с ионизацией электрораспылением оказывается более экспрессной и находит более разнообразное применение, чем традиционные биохимические методы, такие, как последовательное отщепление аминокислот по методу Эдмана. [c.308]

    АОЙ ХИМИИ Количественная же оценка изменений при межмолекулярных взаимодействиях, т.е. конкретная реализация известных конформацион-цЬ1Х возможностей модифицированного пептида, требует как минимум знания структуры рецептора. О сложности возникшей здесь задачи убеди- пъио свидетельствует богатый опыт, накопленный за последние десятилетия энзимологией, где проблема идентификации лиганда и рецептора решается несравненно проще. При этом условии и даже при известной геометрии субстрата и активного центра фермента, а также знании чисто химических аспектов фермент-субстратных взаимодействий количественное описание каталитического акта как взаимообусловленного на всех своих стадиях и спонтанно протекающего процесса наталкивается на большие трудности и часто не может быть вьшолнено однозначным образом. [c.353]

    I При изучении биологических свойств гормона обе модификации ([Pro ]- и [Рго ]-) могут представить большой самостоятельный интерес. Первый налог, сохраняющий все функциональные группы природной молекулы, йолезен для идентификации и исследования той биологической активности В-пептида, за которую ответственна конформация (I). Привлечение второго аналога поможет выяснить роль боковой цепи Ser в реализации этой активности. Кроме того, структуры (I), одинаковые у 5-пептида, [Pro ]- и [Рго ]-аналогов по геометрии оптимальных форм, отличаются по своим ди-Иамическим конформационным свойствам (особенно [Рго ]-), поскольку име-for разную абсолютную энергию внутримолекулярной стабилизации (соответственно -12,5 -13,4 и -17,2 ккал/моль). [c.563]

    В настоящем разделе рассматриваются только те методы, которые обеспечивают ступенчатое отщепление аминокислотных остатков, так что пептидная цепь после отщепления концевого остатка остается незатронутой. Таким образом, из рассмотрения исключается 2,4-динитрофторбензольный метод, предложенный Сэнджером [262]. Этот метод, использовавшийся для получения большей части сведений о М-конце-вых группах пептидов и белков, подробно рассмотрен в ряде обзоров [114, 277, 320]. Не рассматривается также метод расщепления гидразином Ака бори и сотр. [3, 4, 230], позволяющий определять С-концевые аминокислоты. Этот метод в последнее время был усовершенствован [39], так что он стал пригоден для идентификации всех обычно встречающихся аминокислот. [c.238]


Смотреть страницы где упоминается термин Пептиды идентификация: [c.371]    [c.332]    [c.694]    [c.442]    [c.201]    [c.296]    [c.149]    [c.404]    [c.469]    [c.112]    [c.434]    [c.216]    [c.369]    [c.223]    [c.291]    [c.304]    [c.306]    [c.317]    [c.539]    [c.592]    [c.165]    [c.191]    [c.239]    [c.150]    [c.151]    [c.257]   
Биоорганическая химия (1991) -- [ c.348 , c.349 , c.350 ]




ПОИСК







© 2024 chem21.info Реклама на сайте