Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость распространения энергии

    Эта величина называется интенсивностью и характеризует скорость распространения энергии в единице объема вещества. (Прим. переводчика). [c.47]

    На примере волны в слое удобно рассмотреть понятия фазовой и групповой скоростей. Групповая скорость характеризует скорость распространения энергии в направлении движения волны. Волновой импульс является характерным носителем энергии. Поскольку импульс в слое распространяется по зигзагообразному пути, скорость распространения энергии такой волной вдоль слоя равна (рис. 1.5) [c.26]


    Длина волны X X = i- V —скорость распространения энергии излучения в вакууме [c.511]

    Однако в неоднородной среде фазовая скорость зависит от частоты (дисперсия волн), а при больших интенсивностях воздействия реальные среды нельзя считать упругими [55]. Поэтому при больших амплитудах, а также при импульсном воздействии скорость распространения энергии колебаний (групповая скорость волны) может существенно отличаться от рассчитанной по формуле (10). В простейшей теории упругой среды процессы сжатия и растяжения ее элементарных объемов считают обратимыми (т. е. протекающими без изменения энтропии) и, следовательно, адиабатическими. В таком адиабатическом приближении переменное давление, возникающее от переменного сжатия и разряжения (звуковое давление), в любой данной точке среды можно считать функцией только координаты и времени. При этом условии колебательную скорость V и плотность среды р связывают со звуковым давлением р тремя уравнениями в частных производных по координате г и времени т уравнение движения [c.21]

    Зависимость коэффициента поглощения и фазовой скорости волны от частоты (дисперсия), обусловленная собственными колебательными свойствами элементов среды, приводит к существенному различию скорости распространения энергии возмущения (групповой скорости) от фазовой скорости отдельных составляющих сложной негармонической волны. Поэтому групповая скорость при импульсном воздействии (например, ударной волны) может быть намного больше фазовой скорости, найденной по формуле (10). Нелинейные свойства элементов реальных сред, кроме дисперсии, вызывают обратное излучение части энергии звуковой волны (реверберацию). Неоднородности среды увеличивают этот вид реверберации. [c.23]

    В табл. Д.2.3 приведены точные Т-образная и П-образная эквивалентные схемы отрезка линии передачи с волной ТЕМ, а также значения их реактивных сопротивлений и проводимостей для случая со// < <л/4 (со — частота, I — длина отрезка линии у = с1 / Вг — скорость распространения энергии по линии). Короткий отрезок линии с большим характеристическим сопротивлением 2о, нагруженный на обоих концах относительно низким сопротивлением, эквивалентен последовательной индуктивности 1 = короткий отрезок с малым [c.262]

    Скорость распространения пламени зависит от давления, при котором происходит процесс горения. При снижении давления ниже атмосферного скорость горения вначале несколько возрастает, а затем падает. Нормальная скорость распространения пламени зависит также от температуры горючей смеси, по которой распространяется пламя. На рис. 51 приведена зависимость нормальной скорости распространения пламени от температуры горючей смеси н-гептана. Как видно, скорость распространения пламени увеличивается с повышением температуры по линейному закону. Этот характер зависимости сохраняется и для других классов углеводородов, при этом изменяется лишь угол наклона прямой относительно оси абсцисс. Большое влияние на нормальную скорость распространения пламени оказывает энергия активации молекул топлива чем меньше энергия активации, тем выше скорость нормального распространения пламени (табл. 15). [c.80]


    Зависимость нормальной скорости распространения пламени от энергии [c.81]

    Основными параметрами, характеризующими взрывоопасность среды, являются температура вспышки, область воспламенения (температурные и концентрационные пределы — пределы взрываемости), температура самовоспламенения, нормальная скорость распространения пламени, минимальное взрывоопасное содержание кислорода (окислителя), склонность к взрыву и детонации, минимальная энергия зажигания и чувствительность к механическому воздействию (удару и трению). [c.20]

    Катализатор Содержание катализатора, % Наблюдаемая энергия излуче-ИИ набл- Дж погл -ю . Д Скорость распространения пламени д. см/с [c.123]

    При некоторых значениях коэффициента а в смеси создается такой избыток воздуха или топлива, что основная часть энергии от источника воспламенения рассеивается, расходуется на подогрев избыточных количеств воздуха или топлива и скорость распространения фронта пламени в этих случаях падает до нуля. Такие значения а приняты за пределы распространения пламени. Как правило, пределы распространения пламени одновременно являются и пределами воспламеняемости смеси, так как вне этих пределов местный источник зажигания не способен обеспечить распространение процесса горения на весь объем смеси. [c.57]

    Значимость четырех вышеприведенных критериев неодинакова. Наиболее важным является первый критерий, и почти все системы определения взаимозаменяемости включают тот или ной способ измерения потока тепловой энергии. Однако более подробно эта тема будет обсуждаться ниже. Второй критерий, определяющий размер и форму факела при сжигании предварительно смешанного газа, зависит от скорости распространения пламени, причем эта скорость совершенно одинакова для разных парафиновых углеводородных газов, метана, этана и т. д., но имеет различные значения для углеводородов и водородсодержащих газов. И, наконец, критерии образования промежуточных продуктов реакций горения и сажи имеют смысл, когда топливные газы содержат ненасыщенные промежуточные соединения критерий сажеобразования важен и тогда, когда в газовом топливе имеются ненасыщенные и высококипящие углеводороды или соединения ароматического ряда. Во всех остальных случаях углистые отложения и загрязняющие вещества не превышают норм, допустимых для природного газа и используемого топочного оборудования. Вследствие этого учет двух последних критериев взаимозаменяемости ограничен районами, пользовавшимися в прошлом синтетическим или полученным из угля газовым топливом. [c.44]

    Все перечисленные выше результаты получены в предположении (14), и, следовательно, скорость распространения фронта (U зависит, вообще говоря, от величины температуры срезки 0. На примере квазигомогенной модели (а = оо) легко показать, что функция со от 0 монотонно возрастающая, и, значит, между ними существует взаимно однозначное соответствие, так что может быть решена и обратная задача для каждого значения параметра (О < 1/(е -h ) существует такое значение температуры, которое может быть принято в качестве определения температуры срезки . Зависимость максимальной температуры 0 от 0 также монотонно возрастающая, поэтому, задавшись точностью в определении 0, можно приближенно определить допустимый интервал для температуры срезки такой, что соответствующая 0 изменяется в пределах допустимой погрешности. Нижняя граница этого интервала строго больше входной температуры. Сравнение его с соответствующим интервалом температур срезки для процесса конденсированного горения показывает, что в гетерогенном каталитическом процессе, описание которого формально отличается от описания процесса конденсированного горения наличием одного параметра "f (отношением теплоемкостей фаз), допустимый интервал температур срезки расширяется в обе стороны. Критерий отсутствия такого интервала температур известен в теории горения как условие вырождения тепловой волны [12]. В гетерогенной каталитической системе его качественно можно охарактеризовать как условие, при котором реактор по своим характеристикам приближается к реактору идеального перемешивания, или когда мала интенсивность межфазного теплообмена, или, наконец, когда мала энергия активации химической реакции. Последний случай самый существенный. [c.36]

    Разумеется, основным эффектом реакций окисления является выделение энергии (главным образом в виде тепла). Этот процесс часто сопровождается изменением давления в объеме горения, так как с повышением температуры происходит расширение объемов газообразных продуктов горения, а поскольку процесс горения весьма скоротечен, то изменения давления могут привести к взрыву. Действительно, реакции окисления таких газов, как водород и ацетилен, имеющих высокую скорость распространения пламени, часто приобретают взрывной характер. Следствие этого — повреждения и даже разрушения газоиспользующего оборудования и емкостей. Чрезмерное повышение температуры горения может привести к оплавлению горелок, огнеупорных материалов и теплопередающих поверхностей. [c.99]


    Световая волна несет с собой поток энергии электромагнитного поля. При взаимодействии с частицами вещества некоторая доля электромагнитной энергии поглощается последними и переходит в энергию колебаний электрических зарядов в атомах и молекулах [1]. В идеальной однородной среде периодически колеблющиеся диполи излучают вторичные электромагнитные волны той же частоты, которые интерферируя с первичной изменяют ее фазовую скорость распространения  [c.87]

    Рпс. 9.6. Зависимость скорости распространения трещины в ПММА от удельной энергии разрушения Gi [30]. [c.343]

    Здесь /г—постоянная Планка (А = 6,625-10- Дж-с) V —частота поглощаемого излучения, которая определяется энергией поглощенного кванта и выражается отношением скорости распространения излучения с (скорости световой волны в вакууме с = 3-10 см/с) к длине волны Я V = с/х. [c.177]

    Атермический механизм разрушения наблюдается тогда, когда тепловые флуктуации не играют роли и процесс разрыва определяется только напряженным состоянием материала (низкие температуры или большие скорости нагружения, когда скорость распространения трещины определяется упругими свойствами твердого тела и запасом упругой энергии в нем). [c.307]

    Скорость движения электрона в атоме очень велика. Его движение не поддается описанию в уравнениях, применимых к движению частиц. Движение электрона вокруг ядра описывается уравнением, сходным с уравнением движения волны, которое вы изучали в курсе физики. Вы легко можете измерить энергию, которую несет луч света (например, нагревая этим лучом металлическую пластинку). Вы можете измерить скорость распространения световой волны. Ко Вы не сможете указать точку, где хранилась эта энергия, вы не можете назвать массу волны. Т. е. при описании электрона в процессе движения вокруг ядра мы можем говорить о его энергии (и скорости), но не можем говорить о положении и массе. Если же мы будем рассматривать электрон в состоянии покоя и описывать его как частицу, то сможем определить положение и массу, но ничего не узнаем об энергии его движения. Несколько грубым способом мы подошли к формулировке принципа неопределенности. [c.25]

    Графики углов и коэффициентов отражения для стали приведены в Приложении. Максимумы коэффициентов отражения по амплитуде смещения на этих графиках для трансформированных волн больше единицы. Однако с учетом того, что при трансформации происходит изменение плоскости колебаний и скорости распространения волн, законы сохранения импульса и энергии при этом не нарушаются. [c.41]

    Анизотропия сварного шва приводит к тому, что направление вектора фазовой скорости, задаваемой углом призМы ПЭП, отличается от направления вектора групповой скорости, которая определяет направление распространения импульса (см. 1.2). В результате направление лучей искривляется (лучи отклоняются в сторону максимального значения фазовой скорости), пучок лучей деформируется (рис. 3.17) в области максимального значения фазовой скорости концентрация энергии уменьшается, а в области [c.212]

    Скорость распространения энергии излучения равна скорости света с. Используя те Я е рассуждения, что и в кинетической теории газов, получаем далее, что энергия излучения, падающая в единицу времени на единицу поверхности стенки в иптервале частот от V до v+dv, равна [c.19]

    Ряд интересных задач, важных, в частности, для исследований по защите от акустического шума и вибраций, появляется при изучении распространения энергии из одной точки в другую по г трактам (рис. 6.1). В этом случае вычисление частотной характеристики, определяющей зависимость наблюдений на входе и выходе, позволяет правильно определить общую меру линейной связи между входной и выходной величинами, но не дает возможности оценить вклад отдельных трактов. Для решения таких задач в первую очередь необходимо четко различать дисперсное и бездисперсное распространения энергии, т. е. зависит ли скорость распространения энергии от частоты. Некоторые типы распространения энергии дисперсные примерами могут служить волны на поверхности океана или же волны изгиба в конструкциях. Однако во многих других случаях процесс распространения энергии можно считать бездисперсным, например электромагнитное излучение и продольные волны (волны сжатия) в различных средах, в том числе в воздухе и воде (акустический шум). [c.130]

    Далее могут возникать поверхностные моноатомные образования с уступами, на которых присоединение следующего атома будет облегчаться благодаря взаимоде йствию уже с тремя соседними элементами (положение ///) энергия взанмодействня составит здесь величину За. После созда1П1я такого поверхностного образования присоединение каждого следующего атома к нему сопровождается выигрышем энергии За и лишь в начале развития каждого нового ряда атомов — 2а, чем обеспечивается так называемый повторяющийся шаг и наибольшая скорость распространения монослоя атомов на поверхности, т. е. наиболее быстрый рост грани. Когда монослой атомов покроет всю поверхность грани, дальнейший ее рост будет вновь проходить те же стадии до тех пор, пока не образуется двухмерный островок, обеспечивающий повторяющийся шаг. Очевидно, что при образовании такого островка — двухмерного зародыша — затруднения роста грани становятся наименьшими. Скорость роста грани, т. е. скорость формирования кристаллической фазы, должна быть поэтому функцией энергии, пеоб- [c.336]

    Являясь экзотермическим соединением, ацетилен в опеределен-ных условиях способен к взрывному разложению в отсутствие кислорода или других окислителей. При этом выделяется энергия (8,7 МДж/кг), которой достаточно, чтобы разогреть продукты реакции до 2800 °С. Ацетилен способен к самопроизвольному разложению при горении, взрыве, детонации и каскадном разложении. Конечное давление газов зависит от характера разложения. При взрыве скорость распространения пламени достигает нескольких метров в секунду, а конечное давление, являясь функцией развиваемой температуры, возрастает по сравнению с начальным в 8—12 раз. Давление детонационной волны до ее отражения от стенки (а также от торца, изгиба и т. д.) может увеличиться в 30 раз, а в отражаемой волне в 50-—100 раз. [c.20]

    Прямым экспериментальным подтверждением зависимости скорости распространения пламени от его излучения могут служить данные, приведенные в табл. 3.2 [150]. Изучали влияние присадок на скорость распространения пламени в смеси СО + Оа при одновременной регистрации ИК-спектров излучения пламени и по ИК-спектрам вычисляли наблюдаемую энергию излучения пламени (и абл). Результаты этих исследований приведены в табл. 3.2. Поскольку часть энергии излучения пламени расходуется в предпламенной зоне (Ипогл), полная энергия излучения (Un) представляет собой сумму  [c.123]

    Разрывная мембрана не является устройством, предотвращающим взрывной распад ацетилена, а тем более переход распада в детонацию. Скорость распространения пламени при взрыве, особенно при детонации, настолько велика, что мембрана не успевает сработать, независимо от толщины разрывной пластины . Например. если даже ббльщая часть энергии ударной волны, вызванной детонацией, теряется при срабатывании мембраны, процесс распада все равно продолжается. Поэтому мембраны не применяются как самостоятельные защитные приспособления против взрывного и детонационного распада ацетилена и используются только в сочетании с огнепреградителями. [c.88]

    В многочисленных исследованиях было показано, что основным фактором, определяющим скорость распространения пламени, является химическая реакция, служащая тем источниколг тепловой и химической энергии, который поддерживает горение и обеспечивает распространение пламени. Впервые мысль об основной роли химической реакции, ее кинетики в механизме распространения пламени была высказана Нейманом и Уилером [4481. [c.236]

    Можно убедительно продемонстрировать, что для большого числа органических веществ энергия, высвобождающаяся при горении, превышает примерно в 10 раз энергию, выделяющуюся при детонации равной массы ТНТ. Однако можно отметить, что это расхождение значительно уменьшится, если учесть также массу кислорода, без которой не сможет произойти высвобождение энергии. Таким образом, отношение выделенной энергии при горении X кг стехиометрической смеси типичного представителя ряда парафинов и кислорода к энергии, выделенной при детонации X кг ТНТ, примерно равно 2,25. Вопрос "Что представляет собой "внезапное" высвобождение " - требует количественного определения. Скорость распространения детонации в твердом или жидком ВВ (ниже называемом "конденсированным" ВВ) - это приблизительно скорость звука в веществе. В энциклопедии [Kirk-0thmer,1980] приводится диапазон [c.242]

    Распространение энергии СВЧ происходит со скоростью света. Генераторное оборудование является полностью электронным и работает практически безынерционно. Благодаря этому количество энергии СВЧ н момен ее приложения можно мгновенно изменять. Эта особенность позволяет получать более высокое качество продукции, а в некоторых критических режимах применения уменьшает опасность загорания высушиваемого материала. [c.14]

    Число Л всегда целое и в точном выражении не равно атомной массе, которая выражается дробным числом. Существенное отклонение точных величин атомных масс от целочисленных значений А=Ы + Е объясняется тем, что взаимодействие нуклонов (свободных протонов и нейтронов) сопровождается выделением энергии, в миллионы раз превышающем тепловые эффекты, наблюдаемые при химических реакциях. При этом вступает в силу закон Эйнштейна, согласно которому масса тела соответствует полному запасу его энергии, деленному на квадрат скорости распространения света. Последняя величина равна 3-10 ° см/с. Массе 1 г ио уравнению Эйнштейна от1вечает энергия 9-102° эрр 22 млрд ккал. Значит, если при какой-либо ядерной реакции масса реагирующих частиц уменьшится иа 1 г ( дефект масс ), то выделится 22 млрд ккал. [c.210]

    В настоящее время удается возбуждать ультразвуковые волны с частотами порядка десятков миллиардов герц. Так как скорость распространения звука в воздухе (и = 20У Т м1сек, где Т — абсолютная температура) при обычных условиях составляет около 340 м/сек, длины подобных ультразвуковых волн меньше длин волн видимого света. Подобно последнему, ультразвуковые волны можно собирать и направлять на определенные объекты при помощи рефлекторов. Энергия звуковых колебаний растет пропорционально квадрату их частоты. Уже имеются установки, способные создавать интенсивности ультразвука более 100 каг/сж.  [c.590]


Смотреть страницы где упоминается термин Скорость распространения энергии: [c.107]    [c.174]    [c.49]    [c.66]    [c.124]    [c.316]    [c.137]    [c.165]    [c.174]    [c.49]    [c.343]    [c.158]    [c.25]    [c.181]    [c.288]   
Цвет в науке и технике (1978) -- [ c.46 ]




ПОИСК







© 2025 chem21.info Реклама на сайте