Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплота, Энергия концентрации

    Скорость, с которой меняется свободная энергия при изменении концентрации отдельного вещества, называется химическим потенциалом системы, и Гиббсу удалось показать, что именно химический потенциал является движущей силой химических реакций. Химическая реакция идет самопроизвольно от точки с высоким химическим потенциалом к точке с низким химическим потенциалом, подобно тому как теплота самопроизвольно передается от точки с высокой температурой к точке с низкой температурой. [c.113]


    Обратимся к рассмотрению зависимости давления насыщенного пара от температуры. Схема процесса испарения, использованная нами, несмотря на свою упрощенность, позволяет все же в качественной форме предвидеть, как изменение температуры будет влиять на давление насыщенного пара. При повышении температуры кинетическая энергия молекул возрастает и, следовательно, большая доля молекул окажется обладающей энергией, достаточной для перехода в пар к тому же, вследствие происходящего при этом расширения жидкости, взаимное притяжение молекул будет ослабляться и теплота испарения уменьшаться. Так как оба эти фактора действуют в одном направлении, то число молекул, вылетающих из жидкости в 1 сек, при повышении температуры должно, сильно увеличиться и, следовательно, равновесие пара с жидкостью будет достигнуто только при более высоких концентрациях пара. Таким образом, с повышением температуры давление насыщенного пара должно увеличиться. Опыт вполне подтверждает этот вывод. [c.171]

    Теплота адсорбции обычно меньше Яг. Она представляет собой изменение полной поверхностной энергии при изотермическом обратимом поглощении поверхностью адсорбента 1 моль поверхностно-активного вещества из бесконечно большого объема раствора, в котором концентрация с в результате адсорбции практически остается постоянной. Теплота адсорбции является важной характеристикой системы адсорбат — адсорбент и находится в прямой связи с величиной адсорбции. [c.143]

    Особенности кинетики реакций на неоднородной поверхности не исчерпываются, однако, простым изменением формы изотермы адсорбции. Поверхность, неоднородная по теплоте адсорбции, должна быть неоднородна и кинетически. Будем считать, следуя Рогинскому [14], что в ходе процесса зависимость скорости реакции от концентраций реагентов остается неизменной на всех участках и температурная зависимость скорости реакции по-прежнему описывается уравнением Аррениуса. При этом величина предэкспонента постоянна на всех участках, а значение энергии активации распределено по некоторому закону. Все эти допущения являются дискуссионными, но в первом приближении они достаточны, так как главным эффектом действия катализатора обычно бывает именно изменение энергии активации реакции. [c.86]

    Первые работы Дж. Гильдебранда связаны с обоснованием закономерностей идеальных растворов. Им показано, что если при образовании раствора теплота растворения кристаллов соответствует скрытой теплоте плавления и растворы образуются без изменения суммы объемов, растворы следуют закону Рауля [61]. Рассматривая механизм внутримолекулярного взаимодействия в растворе, Дж. Гильдебранд ввел понятие о внутреннем давлении. Жидкости с равными внутренними давлениями образуют идеальный раствор. Жидкости с близкими внутренними давлениями и близкой полярностью взаимно растворимы в широком диапазоне концентраций. Для оценки энергии связи сил межмолекулярного взаимодействия им использованы величины скрытой теплоты испарения. Растворы с дисперсионными силами взаимодействия, у которых теплоты, смешения имеют низкие значения, а изменение энтропии происходит по закону идеальных газов, были выделены в отдельный класс, полу- [c.213]


    Рассмотренные в настоящей работе примеры, естественно, не исчерпывают всего многообразия путей создания оптимальных катализаторов гидрогенизации. Прогнозирование активности и селективности сложных катализаторов — исключительно трудная задача, связанная в конечном счете с многоэлектронной теорией твердого тела. Тем не менее, располагая методами определения энергии связи реагирующих веществ с поверхностью, характера распределения активных центров по теплотам адсорбции, концентраций и скоростей обмена реагентов (для процессов в растворах наиболее полную информацию дают электрохимические методы), в ряде случаев оказывается возможным целенаправленно модифицировать типичные катализаторы гидрогенизации, приближая их к оптимальным для данного процесса. [c.109]

    Н. Термические методы обнаружения свободных радикалов. При рекомбинации радикалов и атомов освобождается значительное количество тепла, которое по крайней мере равно энергии образующейся связи. Так как было найдено, что при малых давлениях рекомбинация радикалов происходит гетерогенно, т. е. на поверхности сосуда, то можно измерять относительные концентрации радикалов, определяя теплоту, выделяющуюся при рекомбинации на поверхности. В качестве датчика могут использоваться шарик термометра [100], накаленная проволочка [101] или спай термопары [102, [c.105]

    Таким образом, теплота диссоциации адсорбированной молекулы гораздо ниже, чем теплота диссоциации молекулы, находящейся в объеме. Если считать, что энергия активации процесса диссоциации близка к энергии диссоциации, то скорость диссоциации молекул на поверхностях будет выше, чем скорость диссоциации в объеме. Поверхность будет играть роль катализатора. Но катализатор не смещает положения равновесия, следовательно, концентрация атомов в объеме, независимо от того, имеется поверхность или нет, будет одной и той же. Если же в объеме возможен процесс, связанный с потреблением атомов, то при наличии поверхности этот процесс будет идти быстрее, чем чисто объемный процесс. [c.83]

    Чтобы выявились особенности кинетики на неоднородной поверхности, контролирующая полоса должна прийти в движение. Это происходит при отравлении активных участков. Оговоримся, что под термином яд будем понимать реагент, продукт реакции или примесь, способные интенсивно сорбироваться на участках активной поверхности, закрывая доступ к ним реагентов. Возможно сочетание следующих условий отравление обратимо или необратимо энергия активации реакции Е и теплота адсорбции яда меняются симбатно или антибатно, или же корреляция между ними отсутствует. Случай симбатности величин Е малоинтересен. Яд сорбируется на наименее активных участках, и отравления фактически не происходит, пока концентрация яда не достигла критического (очевидно, весьма высокого) значения. При отсутствии корреляции ж Е яц, сорбируется с одинаковой вероятностью на участках поверхности с различными значениями Е, контролирующая полоса остается неподвижной и только активность катализатора постепенно падает со временем при необратимом отравлении и приходит к пониженному стационарному состоянию, зависящему от концентрации яда, при обратимом. При том и другом характере взаимосвязи между Е энергия активации сохраняет постоянное значение в течение всего процесса и кинетика остается лангмюровской. [c.86]

    Легко убедиться, что работа на продавливание 1 м воды, например при давлении Р=4,9 МПа (50 кгс/см ), составляет всего 4,90 МДж (1,36 кВт-ч). Для сравнения можно указать, что работа, необходимая для испарения 1 м воды (при теплоте парообразования 2260 кДж/кг), составляет 2270 МДж (630 кВт-ч). Таким образом, теоретический расход Лт энергии на обратноосмотическое разделение невелик и приближается к минимальной термодинамической работе разделения. Так, при расчетном значении минимальной термодинамической работы разделения морской воды (при концентрации солей 3,5%), равном 2,67 МДж/м (0,74 кВт-ч/мЗ) пресной воды, в обратноосмотических установках большой производительности расход энергии составляет [2] 7,20—9,00 МДж/м (2—2,5 кВт-ч/м . Отметим, что для опреснения дистилляцией требуется затратить энергии в 10—15 раз больше [2, 3]. [c.17]

    Ясно, что обмен массой осуществляется за счет или диффузионного (из-за разности концентраций), или конвекционного (из-за разности давлений) потоков. Обмен энергией возможен путем передачи ее или в виде теплоты Q, или в виде работы Ь. Несмотря на широкое распространение терминов теплота и работа , их правильное понимание имеет принципиальное значение при трактовке законов термодинамики. При передаче энергии в виде теплоты положение тел, составляющих термодинамическую систему, — форма ТС, не изменяется энергия от одной системы передается в виде энергии неупорядоченного движения микрочастиц, причем температуры передающей и принимающей теплоту систем различны. При передаче энергии в [c.10]


    Для печей с экзотермическим источником теплоты определяется способ сжигания горючего исходного материала, топлива, количество, химический состав, химические и физические свойства, давления перед сжигательными устройствами и т. д. Для печей с электротермическим источником теплоты способ преобразования электрической энергии в тепловую, необходимая мощность, напряжение и сила тока, диаметр электродов, тип нагревателей, концентраторов, их количество и расположение и т. д. Для печей с гелиотермическим источником теплоты необходимая мощность, оптическая система концентрации энергии и т. д. Для печей со смешанным источником теплоты все вопросы, связанные с каждым видом источника теплоты в совокупности. [c.134]

    Во всех необратимых процессах происходит выравнивание в системе давлений, температур, концентраций и других интенсивных параметров, т. е. осуществляется более равномерное распределение энергии и вещества. Эти процессы называют диссипацией энергии. Необратимые самопроизвольные процессы протекают в направлении, которое приближает систему к состоянию равновесия. Кроме того, эти процессы связаны с передачей теплоты или беспорядочным движением молекул., В сложном процессе, если хотя бы одна стадия необратима, то весь процесс в целом необратим. В реальных процессах часто такой стадией является трение (разных видов), процессы теплопередачи или массопередачи (диффузии, конвекции). [c.108]

    Автор настоящей работы предлагает в параметре растворимости учитывать парное взаимодействие молекул растворителя и растворяемого компонента. Для этого в параметр растворимости рекомендуется дополнительно ввести исходную тепловую энергию растворителя и растворяемого компонента, теплоту смешения за счет прироста энтальпии и прирост энтропии соотношение компонентов в растворе выражать в мольных объемных концентрациях. [c.217]

    Реакции, используемые в термометрическом титровании, должны протекать быстро. При титровании небольших объемов может возникнуть ошибка, связанная с теплотой испарения. При работе с разбавленными растворами выделяющейся тепловой энергии недостаточно, чтобы вызвать большие изменения температуры. В таких случаях необходимо особенно хорошее соответствие температур анализируемого раствора и титранта. Обычно применяют 1 н. растворы титрантов, в то время как концентрация анализируемого раствора должна быть по меньшей мере 10 н. [c.404]

    Как и для обычных химических процессов, скорость электродных реакций зависит от температуры, и эта зависимость может быть использована для определения энергии активации. Чтобы найти энергию (точнее теплоту) активации W, аналогичную энергии активации обычных химических реакций, в случае электродного процесса необходимо было бы поддерживать постоянными не только обычные независимые переменные — давление, концентрацию реагирующего вещества, но и величину отдельного [c.225]

    Так, в системах с (С Н2 )2ЫСН теплоты плавления и модификационного перехода постоянно снижаются с увеличением концентрации присадки выше критической концентрации мицеллообразования, что связано с образованием сольватированных сложных структурных единиц. Межмолекулярные взаимодействия в указанных структурных образованиях понижены вследствие перехода кристаллической структуры в аморфную. Кроме этого, крупные сольватированные мицеллы ДЦА оказывают расклиниваюгцее действие на узу ы кристаллической решетки, что также приводит к снижению энергии межмолекулярных взаимодействий структурных образований в системе. Наличие экстремума на линии, соответствующей теплотам полиморфных переходов связано, по-видимому, с тем, что в смеси объединены мицеллы присадки малых размеров, сокристатишзованные с нормальными парафинами в структурные образования без сольватных оболочек. Конфигурационные изменения подобных структурных единиц при повышении концентрации присадки приводят к резким колебаниям величин тепловых эффектов, соответствующих их неоднородному разрушению при плавлении. [c.162]

    Внутри системы могут происходить передача теплоты от более нагретой части к менее нагретой, взаимные превращения энергии, выравнивание концентраций, однако внутренняя энергия системы остается постоянной. Некоторые системы можно поместить (реально или мысленно) в условия, которые делают ее изолированной. Примером изолированной системы можно считать химическую реакцию, идущую в термостате. Изменение энергии при протекании химической реакции будет компенсироваться включением или выключением нагревателя, при этом общая энергия системы будет оставаться постоянной. [c.14]

    Химика и инженера, занимающегося вопросами переработки нефти, могут заинтересовать в первую очередь такие термодинамические характеристики реакций, как значение свободной энергии АР° и теплота реакции АИ°, отнесенные к стандартным условиям. Зная численные значения этих величин при определенной температуре, можно рассчитать равновесные концентрации и тепловые эффекты. Настоящий раздел посвящается методам определения численных значений таких характеристик. В последующих разделах будет обс -ждено соотношение между изменением свободной энергии реакции и равновесием и применение этого соотношений к решению практических задач. [c.359]

    Реакция гидроперокеида с фенолом протекает сравнительно медленно и с высокой энергией активации (95—110 кДж/моль), несмотря на то, что эти реакции экзотермичны [200]. Например, для реакции гидроперокеида с 4-метоксифенолом теплота реакции = 200 кДж/моль. При температурах ниже 150 °С эта реакция, как правило, слабо отражается на кинетике расходования ингибитора в углеводороде, когда он окисляется. Например, 4-метоксифенол в концентрации 10 моль/л при 140°С взаимодействует с ROOH с удельной константой скорости, равной 4-10 2-10- = 4-10 с , в то время как по реакции [c.111]

    К четвертому уровню иерархической структуры ФХС относятся следующие эффекты. Каждый элемент дисперсной фазы (рис. 1.2) при стесненном движении включений в ограниченном объеме сплошной среды оставляет в ней (дуга 1) турбулентный след (ТСЛ ). Под действием главным образом сил Жуковского вихри от отдельных следов взаимодействуют (дуга 2) друг с другом (ВВ ), вызывая (дуга 3) турбулизацию всей сплошной фазы (ТУР . Поверхность включений, находящихся в зоне взаимодействия турбулентных следов, охватывается вихрями сплошной фазы и вовлекается (дуга 4) в турбулентное движение (ТУР2). Это сказывается на всей совокупности физико-химических эффектов третьего уровня иерархии (дуга 5). В частности, изменение траектории движения включений обусловливает (дуги 6—8) возможность их столкновения (СТ2), коалесценции (К2) и, как следствие, перераспределение полей концентраций, температур и давлений внутри элементов дисперсной фазы (обратная связь 8). Одновременно происходит гашение (дуга 9) турбулентных пульсаций сплошной фазы за счет диссипации их энергии в теплоту (ДТ ), что вызывает (дуги 10, 11) изменение теплосодержания сплошной фазы (ИЭНТ . [c.29]

    Такое полимеризационно-деполимеризационное равновесие, как любое термодинамическое равновесие, подчиняется уравнению изотермы реакции Л0= ДС -Ь/ Пп АГ, а К — к поскольку (R-I = [RM ]. Отсюда следует, что для любой концентрации мономера существует 7 , выше которой преобладает деполимеризация, а АЯ° (Д5 4 -Ь/ 1п 1М))- где ДЯ" и Д5 — разность стандартных энтальпий и энтропий образования мономера и полимера при Т , М — концентрация мономера в жидком состоянии. Чаще всего деполимеризация идет через свободные макрорадикалы, и необходимое условие деполимеризации — генерирование свободных радикалов и возникновение мак-рорадииалов со свободной валентностью на конце. Параллельно с деполимеризацией идут другие процессы передача цепи на полимер, отщепление боковой группы, рекомбинация и диспропорционирование двух макрорадикалов. Константа скорости отщепления мономера от концевого радикала к = ,, + q, где — энергия активации присоединения мономера к макрорадикалу д — теплота присоединения мономера к макрорадикалу q 90 кДж/моль (винилацетат) 78 (метилакрилат) 70 (стирол) 58 (метилметакрилат), 35 кДж/моль (а-метилстирол). С высоким выходом мономера деполиме-ризуются полиметилметакрилат, поли-а-метилстирол, полиметакрио-лонитрил, поливинилиденцианид, полистирол. Для чистого мономера [c.287]

    Здесь уравнения (4.62)—(4.66) описывают средние скорости изменения концентраций инициатора, радикалов, мономеров и суммарной степени превращения в частицах дисперсной фазы. Уравнение (4.67) описывает нестационарный перенос тепла от единичного включения к сплошной фазе. Уравнения теплового баланса (4.68)—(4.69) для реактора и рубашки составлены при допущении полного перемепшвания сплошной фазы в реакторе и теплоносителя в рубашке. Уравнение БСА (4.70) характеризует изменение в течение процесса функции распределения частиц дисперсной фазы по массам р (М, 1). В уравнениях (4.62)—(4.70) введены следующие обозначения / ( г) — эффективность инициирования X — суммарная степень превращения мономеров АЯ — теплота полимеризации — эффективная энергия активации полимеризации 2 — коэффициент теплопроводности гранул р . — плотность смеси — теплоемкость смеси — коэффициент теплоотдачи от поверхности гранулы к сплошной среде Оои сво — начальные концентрации мономеров кр (х) — эффективный коэффициент теплопередачи — поверхность теплообмена между реагирующей средой и теплоносителем, Ут — объем теплоносителя в рубашке Гу, и Тт — температура теплоносителя на входе в рубашку и в рубашке соответственно Qт— объемный расход теплоносителя V — объем смеси в реакторе — объем смеси [c.275]

    Суммирование этих уравнений дает Hj Gl = 2HG1, откуда следует, что реакция образования хлористого водорода может дойти до равновесия при любой концентрации активных центров С1 и Н, и так как энергия активации указанных выше процессов значительно меньше энергии активации процесса lj = 2С1 (равной теплоте диссоциации молекул lj 57,3 ккал), то за время реакции концентрация активных центров существенно не изменится. Таким образом, рассматриваемая реакция идет практически при неизменном числе частиц, из чего можно заключить, что скорость детонации смеси H -Ь ia не будет зависеть от давления. Как видно из данных табл. 13, это заключение подтверждается на опыте, так как при повышении начального давления смеси с ро=200 тор до Ро = 760 тор скорость детонации изменяется всего лишь на 0,7%. [c.244]

    Удельная теплота его ранвя сточных вод, кДж/кг Концентрация органических веществ в сточ-ных водах, % Самообеспечение энергией Отдача энергии на сторону [c.345]

    Процессы, которые без вмешательства извне сами собой совершаться ие могут, называются несамопроизвольными, неестественными или отрицательными процессами. Такие процессы не могут происходить в изолированной системе, так как для своего протекания они требуют воздействия извне, со стороны окружаюн ей среды. Зто воздействие осуществляется передачей системе энергии нз окружающей среды в форме теплоты или работы. Примеры несамопроизвольных процессов переход тепла от холодного тела к горячему переход вещества нз области меньшей концентрации в область большей концентрации выделение продуктов электролиза на электроде за счет затраты электрической работы извне и др. [c.107]

    Уравнение (72) может быть использовано для выражения О как функции от давления р (или концентрации с) при условии, что эти величины заметно отличаются от нуля или единицы. В области средних значений О оно достаточно хорошо описывает многие случаи хемосорбции [278]. Это уравнение изотермы всегда удовлетворяет экспериментальным данным, еслн теплота хемосорбции приблизительно линейно падает с ростом 0. При этом ие обязательно, чтобы процесс протекал с энергие активации. Это можно видеть из уравнений (71) и (72), поскольку уравнение (72) будет иметь тот же вид, даже если /г = 0. [c.151]

    Теплота растворения зависит от природы компонентов системы и концентрации образующегося раствора. Она может принимать как полох<ительные (ДЯр >0), так и отрицательные (АЯр < 0) значения. Энтропия системы при образовании растворов в большинстве случаев растет (ASp>0). Исключением является лишь растворение газов в жидкостях, где энтропия системы убывает (ASp O). Изобарный потенциал (энергия Гиббса) системы при образовании растворов всегда убывает (А(7р<0), что подтверждается самопроизвольностью этого процесса. [c.152]

    Мы уже упоминали, что свободная энергия является функцией состояния. Это означает, что стандартные свободные энергии образования веществ можно табулировать точно таким же образом, как табулируются стандартные энтальпии образования. Важно помнить, что стандартные значения этих функций относятся к определенному набору условий, или стандартных состояний (см. разд. 4.5, ч. 1). Стандартным состоянием для газообразных веществ является давление в 1 атм. Для твердых веществ стандартным является чистое кристаллическое состояние, а для жидкостей-чистая жидкость. Для веществ в растворах стандартным состоянием считается концентрация 1 моль/л для более точных исследований в такое определение приходится вводить некоторые поправки, но мы можем обойтись без них. При табудировании данных обычно выбирают температуру 25°С. Точно так же, как и для стандартных теплот образования, свободные энергии элементов в их стандартных состояниях условно полагают равными нулю. Такой условный выбор точки отсчета не оказывает влияния на величину, которой мы в действительности интересуемся, а именно на разность свободных энергий между реагентами и продуктами. Правила определения стандартных состояний сформулированы в табл. 18.1. Таблица стандартных свободных энергий образования помещена в приложении Г. [c.185]

    По мере разбавления раствора сильного электролита совершается работа против электрических сил ионных атмосфер. При этом происходят дополнительные изменения внутренней энергии за счет теплот растворения, знак и величина которых зависят также от изменений, происходящих в растворителе. Этой добавочной внутренней энергии соответствует добавочное изменение свободной энергии, и появление поправочного множителя к концентрации в виде коэффициента активности, характеризующего уменьшение реакционной способности иона, связанное с наличием ионной атмосферы. Для раствора, содержащего М частиц каждого /-го сорта в некотором заданном объеме (У=соп51) свободная энергия / связана с внутренней уравнением Гиббса—Гельмгольца  [c.390]

    Воспламенение — переход от нормального к взрывному превращению, происходит при критических условиях. Реакцию взрывного превращения можно охарактеризовать как реакцию, протекающую очень быстро при достижении системой критических условий. Воспламенение может иметь цепную или тепловую природу. При цепном воспламенении самоускорение обусловлено прогрессирующим накоплением активных промежуточных частиц (атомов и радикалов), ведущих цепную реакцию. В случае теплового воспламенения ускорение реакции обусловлено разогревом смеси вследствие прогрессирующего выде.че-ния теплоты. Необходимое условие теплового воспламенения — экзо-термичность процесса и сильная зависимость скорости реакции от температуры, т. е. достаточно высокая энергия активации. Встречаются цепно-тепловые режимы воспламенения, когда играют роль оба фактора — и рост концентрации радикалов, и тепловыделение. [c.305]

    Еще ярче недостаточность объяснения изменения диффузионной подвижности одним термодинамическим фактором проявляется при рассмотрении влияния малых примесей на самодиф-фузию растворителя. Известно, что наличие малых концентраций посторонних атомов в серебре (например, меди, цинка и др.) резко снижает энергию активации самодиффузии серебра, хотя термодинамические свойства растворителя при малых концентрациях растворенного вещества практически не изменяются. Точно так же наличие углерода существенно изменяет скорость самодиффузии железа в аустените по сравнению с -железом, хотя теплоты их испарения практически одинаковы. Здесь проявляется действие кинетического фактора. [c.273]


Смотреть страницы где упоминается термин Теплота, Энергия концентрации: [c.155]    [c.48]    [c.63]    [c.440]    [c.187]    [c.376]    [c.198]    [c.53]    [c.174]    [c.50]    [c.308]    [c.60]    [c.12]    [c.63]    [c.153]    [c.161]    [c.39]    [c.283]   
Методы сравнительного расчета физико - химических свойств (1965) -- [ c.248 ]




ПОИСК





Смотрите так же термины и статьи:

энергий теплота



© 2025 chem21.info Реклама на сайте