Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перегруппировка водорода миграции

    В случае наличия сильного электроотрицательного заместителя и а-атома кислорода или азота (амиды, карбонаты, фосфаты и так далее) может осуществляться перегруппировка с миграцией двух атомов водорода. [c.112]

    ПЕРЕГРУППИРОВКИ, ВКЛЮЧАЮЩИЕ МИГРАЦИЮ АТОМОВ ВОДОРОДА [c.19]

    Перегруппировочные ионы представляют собой осколки, происхождение которых нельзя описать простым разрывом связей в молекулярном ионе. Они получаются в результате внутримолекулярной атомной перегруппировки в процессе фрагментации Особенно широко распространены перегруппировки, включающие миграцию атомов водорода в молекулах, содержащих гетероатом. Одним из важных примеров является так называемая перегруппировка Мак-Лафферти  [c.46]


    Перегруппировочные ионы. Наряду с ионами, образующимися при простом разрыве связей, в масс-спектрах почти всех молекул, содержащих более двух углеродных атомов, присутствуют ионы, возникновение которых связано с перегруппировкой атомов в момент диссоциации. Особенно часто наблюдаются перегруппировки с миграцией атома водорода, как этого и следовало ожидать в связи с его малой массой. В некоторых случаях, как, например, в случае образования иона с массой 43 в масс-спектре неогексана (СНз)зС— СНа—СНд, наличие перегруппировки не вызывает сомнения. Образующемуся иону отвечает формула СзЩ, и его возникновение, следовательно, должно включать миграцию водородного атома, а также разрыв по меньшей мере двух С—С связей. Эти же соображения справедливы и для образования иона 29 (СаНб)" в масс-спектре изобутана (СНз)зСН. [c.12]

    Получившийся карбокатион склонен к внутримолекулярным перегруппировкам, сопровождающимся миграцией водорода и ме-тильных групп  [c.251]

    Приведенные в табл. 8.2 данные показывают, что дегидратирующее средство оказывает существенное влияние на направление реакции. Путь I, требующий образования энергетически невыгодного катиона А, во всех случаях имеет лишь подчиненное значение. При использовании разбавленной соляной кислоты в слабополярной водно-диоксановой среде этот путь вовсе не реализуется здесь реагент обладает слишком слабым дегидратирующим действием и может взаимодействовать только с более реакционноспособной гидроксильной группой у С-атома б . Обращает на себя внимание тот факт, что путь II для получения кетона оказывается тем более предпочтительным, чем менее сольватирующей является реакционная среда. Другими словами, при переходе от концентрированной серной к разбавленной соляной кислоте уменьшаются возможности перегруппировки карбкатиона В в Б1. Это вполне понятно время жизни карбкатиона В в сильно сольватирующей серной кислоте, конечно, больше, чем, например, в водной среде или в водно-диоксановой смеси. Соответственно в концентрированной серной кислоте карбкатион Б имеет в своем распоряжении больше времени для превращения в Б . Одновременно это способствует миграции фенильного остатка с образованием карбкатиона В, поскольку тенденция к перегруппировке у фенила больше, чем у водорода (миграция последнего привела бы к продукту 2в, путь II). Указанное в последней колонке табл. 8.2 отношение двух конкурирующих реакций Р11/ Н представляет собой, таким образом, меру стабильности (времени жизни) карбкатиона Б .  [c.580]


    Перегруппировки с миграцией атома водорода встречаются значительно реже. [c.441]

    К первой группе относятся такие известные процессы, как перегруппировка Вольфа, миграция водорода или алкильных групп (1,2-гидридный или алкильный сдвиг), внутримолекулярное внедрение или присоединение, образование "димеров" карбенов и др. [c.123]

    Ароматические углеводороды подвергаются этому типу перегруппировки с миграцией атомов водорода через четырех- и пятичленные состояния  [c.85]

    Этот же метод был применен для измерения скорости перегруппировки (внутримолекулярной миграции водорода) в катионе 2.5 — аддукте гексаметилбензола и протона — и аналогичном аддукте с дейтероном, в результате чего был определен кинетический изотопный эффект этой реакции [888]. [c.28]

    По вопросу о возможности перегруппировок алкильных радикалов, сопровождаемых переходом атома водорода от углеродного атома, соседнего с атомом, несущим неспаренный электрон, имеется наибольшее число неясных экспериментальных результатов и противоречивых мнений. Для объяснения продуктов реакций многие авторы предполагают 1,2- и 1,3-миграции водородного атома, однако никому из них не удалось строго доказать наличие перегруппировки такого типа. [c.187]

    Подобные перегруппировки с 1,2-перемещением водорода или дейтерия наблюдаются и при фотолизе других соединений [293]. 3 зр-Миграция водорода в бирадикале триметилене происходит при изомеризации циклопропана в пропилен [293]. Причем, как найдено в работе [322], энергия активации такого перехода [c.192]

    Таким образом, явление изомеризации радикалов в газовой фазе с 1,2-миграцией водорода даже в качественном отношении пока еще мало изучено. Обобщая рассмотренные литературные данные, следует признать принципиальную возможность этого процесса. Он безусловно затруднен при обычных условиях крекинга углеводородов (до 600 °С), но, вероятно, имеет место в превращениях горячих частиц, а также в свободно-радикальных процессах, в которых последующие реакции радикала являются медленными . Возможно, внутримолекулярные перегруппировки простейших алкильных ра- [c.192]

    Алкилкарбены могут подвергаться перегруппировкам с миграцией алкила или водорода [196]. Обычно эти перегруппировки настолько быстрые, что реакции внедрения или присоединения к кратной связи, столь характерные для СН2, в случае алкил- и диалкилкарбенов встречаются редко. В отличие от ранее упоминавшихся перегруппировок других активных частиц перегруппировки карбенов в большинстве случаев сразу же приводят к устойчивым молекулам, например [197]  [c.254]

    В паровой фазе или растворе в некислотных растворителях гидроперекиси и перекиси разлагаются с гомолитическим разрывом — О — 0-связи, образуя алкоксил или аналогичные радикалы. Эти радикалы могут претерпевать некоторые или все разнообразные возможные превращения, которые могут вызывать цепное разложение исходных перекисей или гидроперекисей. Грей и Вильямс [61] суммировали возможные реакции следующим образом а) взаимодействие с другим радикалом, димеризация или диспропорционирование, б) потеря атома водорода при разложении или реакции с другим радикалом в) потеря меньшего радикала при разложении или реакции с другим радикалом г) отрыв водорода от растворителя или от исходной молекулы д) перегруппировка путем миграции и е) присоединение к ненасыщенной молекуле. Показано, что разумными комбинациями этих реакций можно объяснить большинство из наблюдавшихся распределений продуктов. Например, при разложении перекиси ди-трет-бутила в паровой фазе или в растворе первоначально образуются третп-бутоксильные радикалы МезСО. Эти радикалы могут разлагаться, давая ацетон и метильные радикалы, либо отнять атомы водорода от перекиси или от молекулы растворителя, либо диспропорционировать в бутиловый спирт и окись изобутилена [62, 63]  [c.386]

    Если имеется возможность образования более стабильного карбониевого иона, то сравнительно легко происходят также перегруппировки путем миграции водорода (в виде Н 0). Так, [c.283]

    В случае вторичных и третичных амидов существует дополнительная возможность фрагментации боковой N-алкильной цепи. Эти соединения распадаются по направлениям, уже установленным для алифатических аминов. Первый тип фрагментации вторичных и третичных амидов основан на расщеплении связи у углерода, находящегося в а-положении по отношению к кислороду или азоту схемы (ПО) и (111) соответственно . Второй тип фрагментации связан с расщеплением связи у углерода, расположенного в р-положении к азоту схема (112) . Однако ионы (75) и (76) редко удается наблюдать, так как если заместитель R имеет атом водорода при а-, 3- или ууглеродных атомах, то протекает перегруппировка, включающая миграцию водорода и элиминирование кетена с последующим образованием ионов (77) и (78) соответственно схемы (113) и (114) . Такие превращения хорошо известны для вторичных аминов. [c.436]

    Этой зависимости не подчиняются значения энергии активации Гиббса 1,2-сдвигов атомов водорода, что, по-видимому, обусловливается сравнительно большим значением Есв- С другой стороны, этим зависимостям подчиняются перегруппировки, включающие миграцию арильных групп, что указывает на то, что в переходном состоянии, по энергии подобном фенониевому иону, атомы Со и С заряжены положительно. Так как переходное состояние в вырожденных перегруппировках симметрично, в зависимости от заместителей в бензольном ядре оно отличается различной степенью рыхлости связей Со—Аг и t—Аг. [c.217]


    В этом разделе рассмотрены такие перегруппировки ненасыщенных систем, сопровождающие перенос протона, в результате которых происходит лишь перемещение двойной связи и атома водорода без изменения углеродного скелета молекулы СН-кислоты. Перегруппировки, сопровождающиеся миграцией алкильной или арильной группы (например, перегруппировки Стивенса, Вит-тига, Соммле, Фаворского, бензиловая перегруппировка и т. п.), рассматриваться не будут. В этих перегруппировках основание отщепляет протон от СН-кислоты, но обратный перенос протона к карбаниону не происходит, вместо этого отрицательный заряд стабилизируется в результате миграции органической группы к анионному центру. Поэтому такие перегруппировки относятся скорее к химии карбанионов, чем к химии СН-кислот. Все типы перегруппировок рассмотрены в монографии Крама [1]. [c.192]

    Четноэлектронные осколочные ионы вида А+, как правило, более устойчивы, чем нечетноэлектронные (типа В -), поэтому их пики преобладают в спектрах большинства соединений, особенно при высоких энергиях ионизации (исключения типичны для первых членов гомологических рядов). Процессы типа (3.1, а) чаще всего предполагают простой разрыв связей, в отличие от второго механизма распада, который сопровождается перегруппировками с миграцией атомов водорода или (реже) других фрагментов. Процессы образования менее стабильных катион-радикалов (б) в совокупности с нейтральными частицами в некоторых случаях могут быть более энергетически выгодными, чем процессы образования более устойчивых катионов (а) в сочетании с радикалами. Вследствие этого относительный вклад процессов типа (3.1,6) в общий ионный ток осколочных ионов приуменьшении энергии ионизации может возрастать. Этой особенностью фрагментации нередко пользуются для выявления пиков перегруппировочных ионов в спектрах. [c.41]

    Известен ряд примеров, когда атом водорода мигрирует через ароматическую, систему.. Классическим примером может служить циклогептатриен (ХХХУП ), который при нагревании претерпевает аутотропные перегруппировки с миграцией водорода  [c.416]

    Большое значение имеют также перегруппировки с миграцией водорода гидридный перенос). Направление миграции определяется сравнительной стабильностью ионов карбония, часто находящихся в равновесии друг с другом. Поэтому преимущественно образуются третичные или вторичные продукты замещения или более разветвленные олефины. Особенно часто подобные перегруппировки происходят при кислотнокаталитических превращениях спиртов. Так, при замещении гидроксила в н-бутиловом спирте на галоген получается не первичный, а вторичный бутилгалогенид  [c.49]

    В ином отношении интересны интенсивные пики ионов (СН ) в спектрах 1,3-диоксолана и его 2-метилпроизводного. Единственным другим соединением, в спектре которого имеется большой пик ионов с массой 15, является 1,4-диоксан. Механизм образования этих пиков неясен. Можно видеть, что многие ионы в рассматриваемых масс-спектрах образуются с миграцией атомов водорода, и это усложняет структурное определение по масс-спектру, полученному на приборе с низкой разрешающей силой. В таких спектрах до некоторой степени приходится использовать некоторый избыток в значении масс кислородсодержащих ионов по сравнению с соответствующими углеводородными ионами в качестве способа определения положения кислородных атомов в молекуле. Ни в одном из спектров не наблюдается перегруппировок атомов углерода или кислорода, и поэтому точное измерение масс всех пиков в спектре позволяет часто очень просто установить положение кислородных атомов. Например, в спектре симметричного триоксана ионы с массой 16 характеризуются дублетом (СН+ и О ), который указывает на наличие кислорода группа ионов с низкими значениями масс, лежащими в диапазоне 29—35, обладает составами (СНО), (СНгО), (СН3О), (СН4О) и (СНбО). Они включают ряд ионов, образованных с перегруппировкой водорода. Наличие во всех ионах одного углеродного и одного кислородного атома и отсутствие ионов, содержащих Сг и Ог, свидетельствует о чередовании атомов углерода и кислорода в цепи и указывает на присутствие более чем одного атома кислорода. Это подтверждается отсутствием тяжелых ионов типа С3О или СО3, а также отсутствием молекулярных ионов. Аналогично сказанному большой пик ионов (С4Н7) в спектре 4-метил-1,3-диоксана играет важную роль при расшифровке структуры этого соединения. [c.379]

    Каталитическая изомеризация. Изомеризация олефинов над кислыми катализаторами предполагает миграцию пары электронов совместно с водородом или алкильной группой. В первом случае перегруппировка приводит к смещению двойной связи, во втором — к перестройке углеродного скелета молекулы. Например, изомеризация пентена-1 в пентен-2 в присутствии активированной окиси алюминия при 357° С [12] ив метил-бутены-2 в присутствии алюмосиликатного катализатора при 400° С [8] может происходить в соответствии с правилами 3 и 4  [c.235]

    В своем изложении, следуя Фрейдлиной и сотр. [293], остановимся в основном на принципе структурно-химической классификации перегруппировок, обозначая их по миграции атома водорода 1,2 1,3 1,4 и т. д. (цифры указывают на центры перегруппировки). Однако там, где это удобно, будем вводить обозначения Рабиновича и сотр. [294], которые предложили для процесса перехода атома водорода символ Маь, где N — число атомов С в кольце циклического переходного состояния, равное 3, 4, 5. .. а = р, з или t относится к первичным, вторичным или третичным разрывающимся связям С—Н, Ь р, 3 или f — соответственно к образующимся С—Н-свя-зям. Таким образом, изомеризация [c.187]

    В то же время Бхардвей и Ли [307], изучая изомеризацию 1- С-этилиодида в 2- С-этилиодид под влиянием 7-облучения, обнаружили, что при комнатной температуре в 2% водном растворе 1- С-этил-иодида энергетический выход 2 С-эт ил иодида О = — 0,28 молекул/100 эЗ независимо от дозы излучения. Но добавление 1 вес. % иода перед облучением снижает степень перегруппировки до нуля. Наиболее вероятным механизмом процесса авторы считают 1,2-миграцию водорода [c.191]

    Литература о 4ай-миграции атома водорода в алкильных радикалах в газовой фазе еще более малочисленна. Помимо исследований Тротман-Дикенсона и сотр. [137, 170], рассмотревшего изомеризацию бутильного радикала с 1,3-миграцией дейтерия, следует указать на работу Рабиновича и сотр. [294]. Эти авторы, исследуя внутримолекулярную изомеризацию многих колебательно-возбужденных алкильных радикалов, пришли к выводу, что перегруппировки с V < 5 маловероятны и не могут происходить как простая передача атома. [c.193]


Смотреть страницы где упоминается термин Перегруппировка водорода миграции: [c.277]    [c.327]    [c.362]    [c.379]    [c.383]    [c.436]    [c.632]    [c.383]    [c.562]    [c.278]    [c.362]    [c.340]    [c.15]    [c.198]    [c.199]   
Свободные радикалы (1970) -- [ c.261 ]




ПОИСК





Смотрите так же термины и статьи:

Миграция



© 2025 chem21.info Реклама на сайте