Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вынужденная текучесть

    По аналогии с термином вынужденная эластичность переход от высокоэластического к вязкотекучему состоянию с увеличением напряжения можно было бы назвать вынужденной текучестью . Понятно, что с повышением температуры и с уменьшением скорости деформации предел текучести уменьшается, так как разрушение временных узлов облегчается. [c.122]

    Из того факта, что значительная локальная пластическая деформация имеет место даже при быстром деформировании полимера, находящегося в стеклообразном состоянии в условиях концентрации напряжений, непосредственно следует, что молекулярные свойства, которые влияют на вынужденную эластичность и текучесть материала, также оказывают влияние и на Ос, а следовательно, на ударную вязкость. Данные, собранные в табл. 9.1, демонстрируют эту зависимость Ос от температуры, скорости деформации и молекулярных свойств. Во многих упомянутых работах (например, [14, 19, 22, 24, 25, 54, 63, 64, 212—214]) указывается на возможность существования связи между процессами молекулярной релаксации и энергии разрушения поверхности полимеров. [c.409]


    Из деформационных кривых видно, что введение УНМ приводит к расширению интервала деформаций ( с 14% до 18-22%) до момента развития вынужденной эластичности (образования шейки). Следовательно, ПА6, наполненный УНМ, в отличие от исходного полиамида способен выдерживать существенно большие деформации при нагрузках близких к пределу текучести. [c.166]

    Из рис. 10.9 видно также, что с ростом молекулярной массы непрерывно ухудшается способность полимеров к необратимым деформациям. Это отражается в росте температуры текучести с ростом молекулярной массы. Рис. 10,9 показывает улучшение эксплуатационных характеристик полимеров вообще (эластомеров и пластмасс) с ростом молекулярной массы растут температурные интервалы высокоэластичности (Тт—Гс) н вынужденной эластичности (Гс Тхр). [c.154]

    Выше температуры текучести находится область вязкотекучего состояния, между и — область высокоэластического состояния, между Те и Ту р — область вынужденной эластичности и ниже Гхр полимер находится в хрупком состоянии. [c.217]

    Напряжение, соответствующее точке максимума, обычно называют пределом текучести, хотя по своему физическому смыслу — это скорее предел вынужденной эластичности. Пологий участок кривой, в пределах которого напряжение растет очень незначительно, соответствует этапу постепенного распространения шейки на всю длину образца. Когда весь материал переходит в шейку, образец вновь начинает деформироваться как единое целое, и напряжение начинает быстро увеличиваться. [c.28]

    Молекулярный механизм развития вынужденно-эластической деформации кристаллических полимеров принципиально отличается от рассмотренного выше. В данном случае подвижность полимерных молекул ограничивается наличием кристаллических областей. Следовательно, любое изменение конформации полимерной цепи влечет за собой изменение кристаллической структуры, реализуемое посредством рекристаллизации поэтому напряжение, соответствующее пределу текучести, иногда называют напряжением рекристаллизации. Действие механических напряжений по-разному изменяет температуру плавления различных элементов структуры. Для благоприятно ориентированных элементов температура плавления повышается и, следовательно, возрастает их стабильность. Напротив, температура плавления элементов с неблагоприятной ориентацией может существенно снизиться поэтому в процессе деформации эти структурные элементы плавятся и потом вновь кристаллизуются в виде более устойчивых структурных форм. [c.29]


    При определенных условиях кривые деформации высокопрочных материалов имеют максимум, отвечающий пределу текучести ат (рис. 3.2). Значения От ири растяжении, сжатии и сдвиге различны и зависят, кроме того, от скорости деформации и температуры. У полимеров в стеклообразном и кристаллическом состоянии максимум на кривой деформации соответствует пределу вынужденной высокоэластической деформации [3.24, 3.25] ав. При низких температурах или больщих скоростях нагружения образцы полимера рвутся в точке А, не доходя до предела текучести ат или Оа (кривая ). Но с повыщением температуры или уменьщением скорости деформации (кривая 2) значения ат или Са могут стать меньше значения хрупкой прочности и образец при деформировании потеряет деформационную устойчивость (образуется шейка и образец будет вытягиваться, пока не оборвется при достижении ар). [c.46]

    Было показано также, что помимо резкого понижения прочности и появления хрупкости, вызываемых воздействием жидкого адсорбционно-активного металла, имеют место и другие формы проявления адсорбционного эффекта понижения прочности. Так, вне пределов вынужденной хладноломкости при достаточно высоких температурах и малых скоростях деформирования проявляется качественно иная форма влияния жидкого металлического покрытия — пластифицирующее действие, выражающееся в понижении предела текучести и коэффициента упрочнения металла. Еще одна форма проявления адсорбционного эффекта наблюдается в условиях весьма сильного понижения свободной поверхностной энергии, когда твердый металл под действием металлического расплава обнаруживает склонность к коллоидному диспергированию на блоки коллоидных размеров [16, 17, 22]. [c.338]

    Концентрированные растворы полимеров способны образовывать студни. Студнем называется двухкомпонентная система, получаемая при охлаждении вынужденно образующегося раствора полимера в плохом растворителе и лишенная текучести в результате возникновения в ней сплошной пространственной сетки. [c.172]

    Пластичность — свойство твердых тел развивать необратимые (истинно остаточные) деформации. Необратимые деформации жидких тел (вязкое течение) развиваются при любом напряжении. Для твердых тел их осуществление требует достижения нек-рого наименьшего напряжения, называемого пределом текучее ти. Практически за предел текучести принимают значение напряжения, при к-ром на кривой зависимости напряжения от деформации наблюдается точка максимума или выход на постоянное напряжение. Часто пределом текучести наз. предел вынужденной высокоэластичности. [c.114]

    По мере растяжения шейка распространяется на весь образец (см. также Высокоэластичность вынужденная). С ростом темп-ры модуль Юнга, прочность, твердость падают, однако их изменение не превышает, как правило, одного порядка. С ростом темп-ры уменьшаются также значения предела текучести, достигая пуля при темп-ре стеклования Т , (см. Стеклования температура). Восстановление формы образца достигается нагреванием до темп-ры, несколько превышаюш ей Т . [c.116]

    Термофлуктуационный механизм осложняется тем, что релаксационные процессы проявляются в полимерах тем отчетливее, чем выше температура. Так, по мере перехода к высоким температурам в микрообъемах перенапряжения проявляется вынужденная эластическая деформация. Вначале этот релаксационный процесс приводит к высокоэластическим деформациям в местах концентрации напряжений, главным образом у вершины микротрещин (термо-флуктуационно-релаксационный ме.ханизм), а затем при более высоких температурах — к образованию трещин серебра , стенки которых связаны между собой микротяжами (релаксационный локальный механизм разрушения). Выше температуры стеклования в высокоэластическом состоянии господствующими являются релаксационные процессы и механизмы разрушения приобретают резко отличительные черты (в табл. 11.2 — вязкоупругий механизм разрушения). Здесь в местах концентраций развивается локальное вязкое течение, которое приводит к образованию так называемых надрывов , являющихся аналогами трещин в хрупком состоянии. На схеме прочностных состояний (рис. 11.4) указаны области действия различных механизмов разрушения некристаллических полимеров, а также область пластического состояния между температурой пластичности и температурой текучести Т . Разрушение в [c.289]

    Механический подход исходит из того, что в материале, прилегающем к вершине микротрещины при температуре выше 7 хр, когда предел текучести (вынужденной высокоэластичности Ов) становится меньше перенапряжений в вершине микротрещины, происходят микропластические деформации, снижающие концентрацию напряжения. Часть работы разрушения твердого тела идет на мик-ропластическую деформацию (механические потери первого вида). В связи с этим упругая энергия, идущая на разрушение твердого тела, возрастает. В этом подходе исходят из теории Гриффита и обобщают ее, вводя в формулу Гриффита вместо свободной поверхностной энергии а характеристическую энергию разрущения (или в дальнейшем — энергию разрушения) а, которая включает и свободную поверхностную энергию, и механические потери. Под характеристической энергией разрушения а понимается вся энергия, затрачиваемая на процесс разрушения при образовании единичной поверхности разрушения. [c.316]


    Зная 7 хр и Тс, можно определить интервал температур, в котором полимер ведет себя как упругий нехрупкий материал. Есла эластомеры применяют при температуре в пределах интервала вы-сокоэластичности (между температурами стеклования и текучести), то стеклообразный полимер (пластмассу) применяют в интервале вынужденной эластичности (Гс—Тхр). Полиметилметакрилат можно применять как конструкционный материал, потому что для нега Гс=110°С, а Гхр=10°С. Полистирол нельзя применять без специальной модификации его структуры, потому что для него Гс = = 100°С, а Гхр=90°С. [c.154]

    Выше температуры текучести находится область вязкотекучего состояния, между и Тг — область нысокоэластическосчэ состояния, между Тс. н Гцр — область вынужденной эластичности п ниже Тхс— полимер находится в хрупком состоянии. [c.217]

    Линейные аморфные полимеры в зависимости от температуры могут находиться в трех достаточно четко разграниченных физических состояниях [146, 162—165] стеклообразном, высокоэластическом и вязкотекучем, ограниченных температурой стеклования Тс и температурой текучести Тт- Кроме этих основных физических состояний при более детальном изучении особенностей деформации в зависимости от температуры выделяют еще два промежуточных (переходных) состояния вынужденно-эластическое и вынужденно-пластическое [166, 167]. Первое из них является частью о бласти стеклообразного состояния па границе с высокоэластическим, а второе — частью области высокоэластичеокого состояния на границе с вязкотекучим. [c.53]

    Изменение температуры влияет на напряженное состояние полимеров. На рис. IV. 1 приведена зависимость напряжения от температуры при растяжении. На этой зависимости можно выделить три области, ограниченные упругими (I), высокоэластическими (II) и необратимыми (III) деформациями и соответствующими им пределами хрупкости Стхр, вынужденной эластичности Ов, высокой эластичности Оэл и пластичности (текучести) Оп. [c.149]

    Вследствие того что полимеры обладают вязкоупругими свойствами, значения а и е в данный момент времени зависят от пути достижения этого состояния. Поверхность физических свойств в пространстве а, е, 1 характеризуется тем, что в случае сложнонапряженного состояния каждая из компонент напряжения может иметь свою временную предысторию. Тогда условия разрушения описывают, используя изохронные значения Ор,- или Ер,-. При этом последние образуют поверхность разрыва, которая определяет связь между тремя главными значениями напряжения или деформации при разрыве. Аналогичные поверхности могут быть построены для таких характеристик разрушения, как предел текучести или предел вынужденной эластичности.  [c.73]

    В главе 4 уже были рассмотрены вопросы связи процессов разрушения и деформации для высокопрочного состояния твердых тел. Есть достаточные основания считать, что прочность в квазихрупком состоянии совпадает с пределом текучести (для полимеров Оп — с пределом вынужденной высокоэластичности Ов). Ратнер и Брохин [5.31] рассматривали критическое время 0, необходимое для снижения Ов до величины приложенного напряжения, как деформационную (релаксационную) долговечность, аналогичную прочностной долговечности т. Величина 6 определяется по резкому подъему кривой ползучести полимера (рис. 5.17), после которого начинается высокоэластическая деформация. Было показано, что критическое время 0 подчиняется уравнению, аналогичному (5,9). [c.130]

    ПЛАСТИФИКАЦИЯ полимеров, введение в них труднолетучих низкомол. в-в (пластификаторов), повышающих их пластичность в (или) эластичность. Пластификаторы понижают т-ры хрупкости, стеклования и текучести, уменьшают пределы текучести или вынужденной высокоэластич-вости вследствие уменьшения интенсивности взаимод, между макромолекулами и облегчения подвижности их сегментов, Эффективность действия пластификатора зависит от его совместимости с полимером. Пластификатор отделяется (<выпотевает>) при его содержании выше нек-рэго предела, что определяет нижнюю т-ру эксплуатации пластифициров. полимера, поскольку совместимость падает с понижением т-ры. Иногда пластичность полимера повышается при добавлении несовместимых с ним в-в. Предполагается, что такие пластификаторы ослабляй связи не между отдельными макромолекулами, а между элементами надмол. структуры (структурная П.). П. влияет ве только на механические, но и на диэлектрич. св-ва и электрич. проводимость полимера, что учитывается при подборе пластификаторов. [c.446]

    Образование шейки обусловлено вьшужденноэластич. деформациями (см. Высокоэластичность вынужденная), обратимость к-рых проявляется в широком диапазоне темп-р, начиная с темп-ры деформхгрования и вплоть до темп-ры стеклования. По характеру зависимости е от о эти деформации подобны пластич. деформациям, развивающимся при достижении предела текучести. Поэтому оценка предельных условий перехода дается, по аналогии с описанием критич. состояния в теории пластичности, через нек-рое критич. значение инвариантов тензора напряжений. При этом в качестве таких инвариантов используют максимальное октаэдрич. (касательное) напряжмпю Трс/ и максимальное растягивающее напряжение а . Величина обратна гидростатич. давлению и отражает роль изменений объема при деформировании стеклообразных и частично кристаллич. полимеров. Условие однородной деформации до пере-хс>да обычно формулируется как требование выполнения неравенства тс/(Тос , а ), где %ос — критич. значение при а =0. Вид функции / зависит от механизма развития деформаций, а входящие в нее константы — от [c.173]

    Ур-ния (1) и (3) удовлетворительно описывают поведение различных материалов (аморфных и кристаллич. полимеров, металлов и др.). Решив ур-ние (1) для разных режимов нагружения, напр, для конкретного е(г) [или a(i)], можно получить выражение для a(i) [или, соответственно, для е(г)]. В частности, для случая постоянного напряжения [0(i) = O при г<0 a(<) = onst при i O] получается сильная (близкая к экспоненциальной) зависимость скоростн деформации (ползучести) от напряжения. Для случая растяжения с постоянной скоростью V [e(i)=0 прн i<0 t(t)=vt при i O] характерна примерно логарифмич. зависимость предела текучести (для стеклообразных полимеров — предела вынужденной эластичности, см. Высокоаластичностъ вынужденная) от скорости растяжения. Сходные зависимости наблюдаются на опыте. Заметные отклонения поведения реального тела от А.— Г. у. появляются иногда из-за наличия в теле нескольких релаксационных механизмов, из-за изменения структуры и свойств материала при больших деформациях и т. д. [c.28]

    Термоформование листовых термопластов заключается в нагреве материала до температуры, близкой к температуре текучести, и придании ему необходимой конфигурации в форме, главным образом, в результате высокоэластических деформаций. Для фиксации конфигурации и размеров изделие охлаждают до температуры ниже температуры стеклования или плавления перерабатываемого термопласта, извлекают из формы и высекают из листа. Упаковка из листовых материалов может быть изготовлена и без специального формообразующего инструмента. Hизкqтeмпepa-турное формование листовых термопластов выполняется в основном в области вынужденно-эластического состояния материала при температурах ниже температуры размягчения. После формования изделие охлаждают или выдерживают до дос1Иже-ния равновесного состояния и извлекают из штампа [1). [c.65]

    ДЕФОРМАЦИЯ ПОЛИМЕРОВ — способность полимерных материалов значительно изменять свою форму под действием внешних сил, проявляя при этом сцецнфические лишь для них закономерности сопротивления деформации, обусловленные цепным строением макромолекул. Д. п." чрезвычайно резко зависиг от те-мп-ры, а также от динамич. режима воздействия сил, что связано с возникновением при деформации неравновесных состояний (см. Механические свойства полимеров). Деформация аморфных полимеров слагается из упругой, высокоэластич. и пластич. деформаций. Соотношение этих деформаций определяется нриродой вещества, темп-рой и скоростью воздействия сил. Деформация аморфных полимеров при достаточно низких темп-рах (в застеклованном состоянии) прп ие очень больших напряжениях имеет чисто упругай характер. При возрастании растягивающих напряжений происходит либо хрупкое разрушение полимерного стекла (при деформациях от 0,1 до нескольких %), либо развитие больших деформаций норядка 100— 200%. Такая большая деформируемость, часто называемая холодной текучестью, а также вынужденной эластичностью полимеров, ведет к образованию ани-зотронного полимера, сохраняющего свое деформированное состояние после разгружения неограниченно долго. Полное восстановление исходной формы может быть достигнуто нагреванием до температуры стеклования. [c.538]

    Выбор Од в качестве критерия для оценки напряженного состояния может оказаться вынужденным для конструкционных материалов, на диаграммах растяжения которых трудно обнаружить точку перегиба, соответствуюшую пределу пропорциональности (фиг. 161,6). Но для углеродистых сталей и других материалов, на диаграмме растяжения которых (фиг. 161, а) отчетливо видны точки перегиба, соответствующие пределу пропорциональности А, пределу текучести В и пределу прочности С, выбор допускаемого напряжения относительно предела прочности Од ничем не оправдан и его можно объяснить только установившейся в машиностроении традицией и силой привычки. [c.156]


Смотреть страницы где упоминается термин Вынужденная текучесть: [c.289]    [c.319]    [c.147]    [c.200]    [c.334]    [c.98]    [c.25]    [c.240]    [c.111]    [c.116]    [c.117]    [c.444]    [c.31]    [c.111]    [c.115]    [c.173]    [c.444]    [c.274]   
Прочность и разрушение высокоэластических материалов (1964) -- [ c.122 ]




ПОИСК





Смотрите так же термины и статьи:

Текучесть



© 2025 chem21.info Реклама на сайте