Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разрушение в электрических полях

    При этом уже вскоре по достижении начального напряжения короны происходит самопроизвольный искровой разряд (пробой) с разрушением электрического поля. [c.263]

    Электрический способ обезвоживания и обессоливания является весьма эффективным он широко применяется на промыслах и на нефтеперерабатывающих заводах и вытеснил другие способы, ранее применявшиеся для этой цели, благодаря своей универсальности и возможности сочетания с тепловым и химическим способами. При правильном подборе режима обессоливания этот способ дает отличные результаты эксплуатационные расходы относительно невелики. Мощность установки электрообессоливания на заводах рассчитывается на полную нефтеперерабатывающую мощность. Электрический способ обессоливания включает две операции 1) введение в частично обезвоженную нефть горячей воды для растворения солей и превращения нефти в эмульсию (расход воды на промывку эмульсии 10—15% от объема нефти) 2) разрушение образовавшейся эмульсии в электрическом поле. При этом вода, выделяющаяся из эмульсии, уносит с собой соли. Обычно при использовании этого способа остаточное содержание воды в нефти О—2,5% количество удаляемых из нее солей —95% и более. [c.12]


    Электрические способы разрушения нефтяных эмульсий. Использование электрического поля для обезвоживания нефтей началось в 1909 г., ныне этот способ широко применяется на промыслах и нефтеперерабатывающих заводах. [c.183]

    Метод заключается в том, что образец адсорбента помещают между обкладками конденсатора и при достаточно высокой температуре (обычно комнатной) к электродам прикладывают постоянную разность потенциалов, после чего образец охлаждают под напряжением. При этом диполи или заряды перебрасываются в направлении действия поля и замораживаются . Охлажденный образец оказывается поляризованным. После снятия поляризующего напряжения он сам создает вокруг себя электрическое поле и становится электретом. Если поверхность образца имеет при этом заряд, противоположный по знаку заряду, который был на ближайшем электроде при поляризации, говорят о гетерозаряде электрета. Нагревание образца приводит к разрушению гетерозаряда (диполи, например, в этом [c.254]

    Деэмульгаторы — химические реагенты с большой поверхностной активностью — могут быть использованы при всех способах разрушения водонефтяных эмульсий механических (отстой, фильтрация, центрифугирование) термических (подогрев при атмосферном или избыточном давлении, промывка горячей водой) электрических (обработка в электрическом поле переменного или постоянного тока) химических (обработка реагентами) и т. д. [c.39]

    Основной задачей деэмульгирования нефти является разрушение пленки эмульгатора. В зависимости от стойкости эмульсии применяют различные методы ее разрушения. Существуют три метода разрушения нефтеносных эмульсий механический, химический и электрический. На промыслах и нефтеперерабатывающих заводах применяют также комбинированный способ,-сочетающий термохимическое отстаивание под избыточным давлением и химическую обработку эмульсии в электрическом поле высокого напряжения. [c.8]

    Эффект релаксационного торможения. Согласно электростатической теории растворов сильных электролитов ионная атмосфера обладает центральной симметрией. При движении иона в электрическом поле симметрия ионной атмосферы нарушается. Это связано с тем, что перемещение иона сопровождается разрушением ионной атмосферы в одном положении иона и формированием ее в другом, новом. Этот процесс происходит с конечной скоростью в течение некоторого времени, которое называется временем релаксации. Вследствие этого ионная атмосфера теряет центральную симметрию, и позади движущегося иона всегда будет некоторый избыток заряда противоположного знака. Возникающие при этом силы электрического притяжения будут тормозить движение иона. Таким образом, сила, действующая на ионы и определяющая скорость их движения в электрическом поле, а следовательно, электрическую проводимость раствора, будет  [c.461]


    Поэтому для ускорения процесса разрушения эмульсии ее наряду с отстоем одновременно подвергают и другим мерам воздействия, направленным на укрупнение капель воды, увеличение разности плотностей, снижение вязкости нефти. Основными мерами являются подогрев эмульсии (термообработка) введение в нее деэмульгатора (химическая обработка) применение электрического поля (электрообработка). Существуют и другие меры воздействия на эмульсию, например перемешивание, вибрация, обработка ультразвуком, фильтрация, способствующие в основном укрупнению капелек воды. [c.34]

    Разрушение эмульсии электрическим полем представляет собой весьма сложный процесс и зависит от многих факторов. Для выяснения его сущности целесообразно рассмотреть поведение капелек воды во внешнем электрическом поле и их взаимодействие под влиянием последнего. Это взаимодействие зависит от диэлектрической проницаемости и электропроводности воды и нефти, от поверхностного натяжения на границе фаз, вязкости нефти, характера и величины электрического поля и т. д. [c.47]

    Разрушение водонефтяной эмульсии в электрическом поле представляет собой весьма сложный процесс, эффективность которого сильно зависит от свойств эмульсии, характера и величины поля и ряда технологических условий его применения. В связи с этим представляют интерес зафиксированные на кинопленке результаты наблюдений под микроскопом за поведением эмульсий в электрическом поле. Разумеется, эти результаты не могут быть непосредственно перенесены на реальный процесс, фактически происходящий при разрушении эмульсии в электродегидраторах, поскольку они получены при обработке эмульсии полем в тонком нефтяном слое, без подогрева и подачи деэмульгатора. Однако они достаточно наглядно иллюстрируют механизм поведения эмульсии в [c.56]

    Механизм разрушения нефтяных эмульсий можно разбить на три элементарных стадии столкновение глобул воды слияние их в более крупные капли выпадение капель или выделение в виде сплошной водной фазы. Чтобы обеспечить максимальную возможность столкновения глобул воды, увеличивают скорость их движения в нефти различными способами перемешиванием в смесителях, мешалках, нри помош и подогрева, ультразвука, электрического поля, центробежных сил и др. Однако для слияния капель воды одного столкновения недостаточно, нужно нри помощи деэмульгаторов или др тим способом ослабить структурно-механическую прочность слоев, обволакивающих глобулы воды, и сделать их гидрофильными. [c.33]

    В промышленности наибольшее применение нашли комбинированные способы разрушения нефтяных эмульсий, которые нельзя отнести только к одной из указанных выше групп. Основным современным способом деэмульгирования и обезвоживания нефти на промыслах является термохимический отстой под давлением до 15 ат с применением эффективных реагентов — деэмульгаторов. Этот способ — самый простой в осуществлении и обслуживании и по подсчету американских специалистов самый дешевый [40]. Дпя обессоливания нефти, главным образом на нефтеперерабатывающих заводах, применяют способ, сочетающий термохимический отстой под избыточным давлением с обработкой эмульсии в электрическом поле высокой напряженности. [c.34]

    Для выяснения механизма разрушения эмульсии в электрическом поле необходимо рассмотреть поведение капель воды в нефтяной эмульсии, находящейся в электрическом поле, и изменение самого поля под влиянием этих капель. В безводной нефти между двумя плоскими параллельными электродами, находящимися под высоким напряжением, возникает однородное электрическое ноле, силовые линии которого параллельны друг другу (см. рис. 19, а). Совершенно иначе располагаются силовые линии поля между электродами, погруженными в эмульсию В/Н, где однородность поля нарушается (рис. 19, б, в). [c.47]

    Диаметр электродов в зависимости от стойкости поступающей эмульсии и ее электропроводности равен 1,3—2,7 м. С увеличением диаметра электродов при одной и той же производительности аппарата увеличиваются размеры электрического поля и время пребывания эмульсии в нем, что способствует более полному ее разрушению. Однако при увеличении диаметра электродов сила тока растет пропорционально его квадрату, так как сечение и электропроводность столба жидкости, заключенного между электродами, пропорциональны квадрату диаметра электродов. При чрезмерном увеличении [c.51]

    В первой серии определяли содержание солей в каплях с неразрушенными оболочками и проверяли влияние электрического поля ка коалесценцию капель с неполностью разрушенными оболочками. В этой серии одномоментно отбирали две пробы нефти по 250 см и одну пробу 50 см . К первым двум пробам добавляли по 25 см горячей дистиллированной воды и в течение 30 мин смешивали при 60 °С. Одну пробу перемешивали при выключенном поле, вторую — при [c.149]


    Для прослеживания динамики разрушения бронирующих оболочек были определены зависимости количества вымываемых солей от времени смешения. Во всех опытах смешение проводили в электрическом поле. Режимы смешения были такие же, как и в предыдущих опытах. На рис. 8.2 приведены две типовые зависимости количества солей, вымытых из нефти, от времени перемешивания. Там же приведены количества солей, вымытых из той же нефти по методике ГОСТ. [c.150]

    Данные таблицы полностью подтверждают, что неполное вымывание солей в предыдущих опытах обусловлено плохим разрушением бронирующих оболочек. Однако полностью соли вымываются только при смешении в электрическом поле. Причем эффект поля в этой серии опытов проявляется сильнее, чем при смешении без бензола (см. табл. 8.3). Для выяснения причины такого явления проведем качественный анализ процесса коалесценции в этой серии опытов. Так как в пробы перед смешением одновременно добавляли бензол и промывочную воду, процесс разрушения бронирующих оболочек проходил во время смешения. Пока оболочки на мелких каплях не разрушены бензолом, процесс вымывания солей идет так же, как и в опытах, результаты которых представлены на рис. 8.2, — вначале быстрое вымывание солей за счет идущей на транспортной стадии коалесценции капель пластовой и промывочной воды, затем процесс вымывания солей переходит на кинетическую стадию коалесценции, в результате чего его скорость резко уменьшается. Влияние бензола на начальном этапе смешения еще не сказывается. Затем оболочки начинают разрушаться, и скорость процесса вымывания солей опять должна возрасти. [c.151]

    Ана.пиз наиболее характерных зависимостей показал, что оптическая плотность уменьшается до определенного минимума, затем снова увеличивается. Это можно объяснить явлением поляризационной коагуляции при высоких значениях напряженности электрического поля с последующим разрушением агрегатов вследствие диэлектрофоретических явлений, а также за счет образования высокодисперсного гидроксида при анодном растворении металла электрода. [c.94]

    Исследования и практический опыт так же показывают, что для разрушения стабилизированных нефтяных эмульсий необходимо одновременное воздействие реагента-деэмульгатора, тепла, а иногда и электрического поля. [c.68]

    Таким образом, полученные результаты показывают, что для разрушения эмульсий нефтей полуострова Мангышлак наиболее эффективно сочетание действий реагента-деэмульгатора и электрического поля. В этом случае высокая степень обработки эмульсии достигается при минимальных расходах реагента. [c.84]

    Релаксационный эффект связан с существованием ионной атмосферы и ее влиянием на движение ионов. При перемещении под действием внешнего электрического поля центральный ион выходит из центра ионной атмосферы, которая вновь воссоздается в новом положении иона. Образование и разрушение ионной атмосферы протекает с большой, но конечной скоростью, характеристикой которой служит время релаксации. Это время может рассматриваться как величина, обратная константе скорости создания или разрушения ионной атмосферы. Время релаксации зависит от ионной силы раствора, его вязкости и диэлектрической проницаемости. Для водного раствора одно-одновалентного электролита время релаксации т выражается [c.261]

    Взаимодействие твердого тела (металла) с электролитом (водным раствором каких-либо солей) может привести к растворению (разрушению) твердого тела. Для понимания процессов растворения необходимо рассмотреть наиболее распространенный растворитель - воду. Атомы кислорода и водорода, из которых состоит вода, образуют полярные молекулы, характеризующиеся наличием двух полюсов-положительного и отрицательного. Это и определяет наличие силового электрического поля молекулы воды. [c.27]

    Этот метод не дает надежных результатов только в случае очень концентрированных устойчивых эмульсий, в которых образуются сложные системы двух типов эмульсий, или же при наложении сильного электрического поля, которое может разрушить (пробить) очень тонкие пленки непроводящей фазы, разделяющей проводящую дисперсную фазу (это явление используется для разрушения эмульсии воды в нефти). Кондуктометрический метод очень удобен для контроля процесса обращения эмульсии. [c.243]

    В некоторых случаях возникает необходимость разрушения эмульсии или предупреждения ее образования. Для этой цели применяют различные способы, основными из которых являются действие сильных минеральных кислот и их солей высаливание)-, действие температуры действие искусственного силового поля (седиментация) действие электрического поля (электрофорез) и действие ПАВ — деэмульгаторов. Например, полимер из латекса выделяют высаливанием или вымораживанием для обезвоживания нефти и нефтепродуктов воздействуют электрическим полем для этого, а также отделения сливок от молока используют центрифугирование сливочное масло из сметаны выделяют механическим взбиванием органические вещества при перегонке с водяным паром отделяют от воды высаливанием или действием деэмульгаторов, и т. д. [c.287]

Рис. 3.8. Аппарат для разрушения ловушечной водонефтяной эмульсии в электрическом поле (а — аппарат б — электрод) Рис. 3.8. Аппарат для разрушения ловушечной <a href="/info/1466720">водонефтяной эмульсии</a> в <a href="/info/12353">электрическом поле</a> (а — аппарат б — электрод)
    Электрический пробой совершается в доли микросекунды и обусловливается процессами в диэлектрике, не связанными с за- метными предварительными изменениями. При этой форме пробоя разрушение диэлектрика наступает при достижении некоторой предельной напряженности электрического поля, которая практически не зависит от времени приложения напряжения. Согласно гипотезе об электронной природе электрической формы пробоя твердых диэлектриков [62, гл. IV], энергия электрического поля передается диэлектрику в результате взаимодействия с элементами его структуры ускоренных электронов и затрачивается на преодоление связи между ними. [c.263]

    ПММА 120° С) проходит через максимум. Наличие этого максимума, находящегося в температурном интервале стеклования, показывает, что термическое разрушение остаточной поляризации, образовавшейся в ПММА, непосредственно связано с сегментальной формой теплового движения в полимере [65]. Известно, что в том же температурном интервале (рис. 7.14) находятся и максимумы диэлектрических и механических потерь ПММА (а-процессы). Они также связываются с сегментальной подвижностью в полимере, проявляющейся в условиях действия переменных механических и электрических полей. Расхождение в значениях энергий активации для процесса а-релаксации в ПММА, полученных методом термодеполяризации и методом диэлектрических потерь, могут быть объяснены спецификой обоих методов и особенностями молекулярного движения в полимере при температурах выше и ниже 7 с. Из данных рис. 7.15 видно, что разные физические методы позволяют фиксировать проявление одних и тех же процессов молекулярной подвижности в полимерах в различных температурно-частотных диапазонах, т. е. дают взаимодополняющую информацию. [c.199]

    Так как коллоидные частицы имеют слабый отрицательный заряд, хлопья коагулянтов — слабый положительный заряд, то между ними возникает взаимное притяжение, способствующее формированию крупных частиц. В процессе коагуляционной очистки сточных вод происходит соосаждение с минеральными примесями за счет адсорбции последних на поверхности оседающих частиц. Из воды удаляются соединения железа (на 78—89 %), фосфора (на 80—90 %), мышьяка, цинка, меди, фтора и других. Снижение по ХПК составляет 90—93 %, а по БПКб —80—85 % Степень очистки зависит от условий воздействия на коагуляцию дисперсной системы радиации, магнитного и электрического полей, введения частиц, взаихмодействующих с системой и стабилизирующих ее. Воздействие излучения, как и окисление органических соединений озоном способствует разрушению поверхностно-активных веществ (ПАВ), являющихся стабилизаторами твердых и жидких частиц, загрязняющих сточные воды. Под воздействием электрического поля происходит образование агрегатов размером до 500—1000 мкм в системах Ж — Т, Ж] — Ж2 и Г — Т. [c.479]

    Под действием электрического поля происходит движение не только коллоидных частиц в сторону одного из электродов про-тивоположно заряженные ионы, содержащиеся в растворе и концентрировавшиеся в нем вокруг частиц коллоида, тоже приходят в движение в противоположном направлении — в сторону другого электрода. Таким, образом, происходит как бы разрушение ми- [c.532]

    Гершуни С. т., Либовский М. Г. Оборудование для обезвоживания и обессоливания нефти в электрическом поле Обзорная информация. Химическое и нефтяное машиностроение. Сер. ХМ-1. М. ЦИНТИхимнефтемаш 1983. Левченко Д. Н.. Бергштейн Н. В.. Худякова А. Д.. Николаева Н. М. Эмульсии нефти с водой и методы их разрушения. М. Химия, 1967. Пинковский Я- Н. Совершенствование конструкций горизонтальных электродегидраторов. — Химия и технология топлив и масел, 1981, Л 6. [c.378]

    Сущность процесса обессоливания нефти заключается в ее водной промывке при смешении нагретой нефти с пресной водой, последующем разрушении образуемой при этом водонефтяной эмульсии и отделении соленой воды от нефти. Разрушение эмульсии и отделение воды осуществляется в специальных эдектродегидраторах, в которых под действием переменного электрического поля высокой напряженности, температуры и вводимого в нефть деэмульгатора взвешенные в нефти мелкие капельки воды спиваются в более крупные, которые под [c.38]

    ПОВЕДЕНИЕ НЕФТЯНЫХ ЭМУЛЬСИЙ ВО ВНЕШНЕМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ Коалесценцию капель в электрическом поле выской напряженности используют, как правило, для разрушения эмульсий типа В/Н, полярная жидкость которых, имеющая №льшую диэлектрическую проницаемость и относительно высокую электропроводность (вода), диспергирована в неполярной жидкости с небольшой диэлектрической проницаемостью и сравнительно низкой электропроводностью (нефть, нефтепродукты). Так, диэлектрическая проницаемость воды, молекулы которой характеризуются большим электрическим дипольным моментом, составляет 81, в то вревкш как диэлектрическая проницаемость нефти - около 2. Усредненная диэлектрическая проницаемость водонефтяной эмульсии зависит от содержания воды в ней и с ростом обводненности увеличивается [41, 42]. Электропроводность чистой воды равна 10" - 10" Ом" -см", а соленой - еще больше. Электропроводность безводной нефти составляет всего 10" - 10" Ом" см" . При увеличении содержания воды проводимость эмульсии значительно повышается. [c.47]

    Как показьшает многолетний опьгг использования разных электрических полей, эффективность разрушения различных эмульсий зависит не только от характера этих полей и технологических условий их применения, но и от природы самих эмульсий. Так, целесообразность применения постоянного или переменного электрических полей для обезвоживания топлив сильно зависит от электропроводности последних. Для легких топлив, отличающихся малой электропроводностью, например для дистиллятов, очень эффективным оказьшается постоянное электрическое поле. Для тяжелых же топлив, характеризующихся высокой электропроводностью, т. ё. для нефтей, тяжелых дистиллятов и остаточных топлив, более целесообразно применять переменное электрическое поле [53]. Поэтому во всех электродегидраторах, предназначенных для обезвоживания нефти, создается переменное электрическое поле. Напряженность поля зависит от конструкции аппарата и может варьировать в пределах 1-3 кВ/см.  [c.60]

    Для интенсификации деэмульгирования эмульсий В/Н широко применяют электрическое поле переменного тока. Под его влиянием между глобулами воды образуются дополнительные электрические поля и возникают электрические силы, способные преодолеть сопротивление стабилизируюш их слоев глобул воды. В результате действия основного и дополнительных электрических полей происходит столкновение глобул и разрушение образовавшихся вокруг них пленок, способствуюш ее их коалесценции в крупные капли, которые легко отделяются от нефти под действием силы тяжести. [c.47]

    Разрушение цепочек струей нефти дает возможность применять в высокообводненной и соленой среде электрическое поле с довольно высоким градиентом (2—3 кз см). [c.53]

    Для разрушения нефтяных эмульсий в электрическом поле в промышленности широко применяются также электрокоалесцеры, которые устанавливаются перед емкостью или отстойником. Электрокоалесцеры отличаются от обычных электродегидраторов компактностью, а также более высокой безопасностью и надежностью в работе. [c.423]

    Для разрушения нефтяных эмульсий используются механические (отстаивание), термические (нагревание), химические и электрические методы. При химическом методе обезвоживания нагретую нефтяную эмульсию обрабатывают деэмульгаторами. В качестве последних используются различные неиногенные ПАВ типа заш итных коллоидов оксиэтилированные жирные кислоты, метил- и карбоксиметилцеллюлоза, лигносульфоно-вые кислоты и др. Наиболее эффективное удаление солей и воды достигается при электротермохимическом методе обессоливания, в котором сочетаются термохимическое отстаивание и разрушение эмульсии в электрическом поле. [c.125]

    Для электрических методов разрушения эмульсии характерны два случая первый — когда капли заряжены, второй — когда они электронейтральны, но приобретают дипольный момент, индуцируемый в постоянном или переменном электрическом поле. Таким образом, в эмульсиях, где частицы не заряжены, происходит коалесценция диполей. Это можно наблюдать визуально, если две капли поместить рядом друг с другом в электрическое поле с напряженностью Е канлн вскоре начнут притягиваться друг к другу. Для двух жидких сфер одинакового радиуса г с диэлектрической проницаемостью е, расстоянием между ними в масле I и диэлектрической проппцаемостью масла е силы иритяження составят  [c.69]

    При наличии электрического поля на границе мегалл — покрытие развиваются электрохимические реакции, продукты которых могут способствовать разрушению покрытий. Ясно, что чем меньше сопротивление покрытия, тем выше при прочих равных условиях скорость электрохимических процессов и тем сильнее их влияние на устойчивость покрытий. Прохождение через покрытие катодного тока (например, при электрохимической защите) нередко сопровождается отслоением защитной пленки, что объясняется более усиленной мшрацией воды через покрытие выделением газообразного водорода, вызывающим отрыв покрытия защелачиванием среды в пограничном слое, которое способствует омылению некоторых компонентов покрытия. [c.44]

    Возможность создания резонансной, синергетической и высокоинтенсивной технологии разрушения высокоустойчивой эмульсии тяжелых нефтей и интенсификации отделения воды из нефти видна из кривых динамики отстоя эмульсии на рис. 8. На этом рисунке приведены кривые динамики отстоя 10%-ой эмульсии нефти без обрабо1ки электрическим полем и при обработке в течении 5 сек низкочастотным (50 Гц), высокочастотным (3 МГц) и высокочастотным + низкочастотным электрическими полями. [c.148]

    Одним из наиболее эффективных способов разрушения нефтяных эмульсий является воздействие на них электрическим полем. Аппараты, в которых осуществляется этот процесс, называют злектродегидраторами. Эти аппараты по сравнению с водоотделителями других типов имеют более сложное внутреннее строение. Для их работы фебуется высоковольтное электрооборудование - трансформаторы, проходные изоляторы и т. д. Применение электродегидраторов позволяет достигать высоких т.э.п. в процессах промысловой и заводской подготовки нефти. [c.78]

    Если изменять не напряженность электрического поля, а его частоту, то при высоких частотах направление движения иона будет изменяться так часто, что вместо перемещения он будет совершать колебания. Такие же колебания, но в обратном направлении будет совершать ионная атмосфера. Поскольку при этом ее разрушения не происходит, то релаксационный тормозящий эффект отсутствует (Яц = 0) и эквивалентная электропроводность электролита возрастет (эффект Дебая — Фолькенгагена), хотя ее величина все же будет отличаться от величины эквивалентной электропроводности бесконечно разбавленного раствора  [c.42]

    Переход от упругой деформации к высокоэластической у полимеров сопровождается возрастанием механических потерь и прохождением их через максимум (рис. II. 12). В соответствии с этим температура механического стеклования Ти. с определяется как температура, которой соответствует максимум механических потерь. Ее следует рассматривать как температуру, при которой практически перестает проявляться высокоэластичность.. Амплитуда деформации не влияет На Гм. с, так как по условию деформация достаточно мала. При больших напряжениях и деформациях у полимеров возникакзт качественно новые явления (вынужденноэластические деформации и разрушение). Закономерности, аналогичные представленным на рис. II. 11 и II. 12, наблюдаются, как было отмечено выше, при действии на полимеры переменных электрических полей. В этом случае роль модуля упругости играет диэлектрическая проницаемость, а механических потерь — диэлектрические потери. Электрические, поля действуют на те структурные [c.97]


Библиография для Разрушение в электрических полях: [c.111]   
Смотреть страницы где упоминается термин Разрушение в электрических полях: [c.151]    [c.180]    [c.36]    [c.63]    [c.101]    [c.424]    [c.135]   
Прочность и механика разрушения полимеров (1984) -- [ c.140 , c.142 ]




ПОИСК





Смотрите так же термины и статьи:

Поле электрическое



© 2025 chem21.info Реклама на сайте