Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионный радиус, эффективный

    Эффективные радиусы атомов и ионов в соединениях определяют по ра ности межъядерного расстояния и известного эффективного радиуса одной из частиц. Так, разными методами установлено, что ионный радиус иона F составляет 0,133 нм. С другой стороны, расшифровка рентгенограмм кристалла NaF дает значение d = = 0,231 нм. Следовательно, радиус иона Na+ равен 0,098 нм. [c.153]


    Для получения ионных радиусов, которыми можно было бы ноль зоваться, необходимо, чтобы сумма двух таких радиусов равнялась равновесному расстоянию между соответствующими ионами в кристалле. Для двух противоположно заряженных ионов это расстояние зависит от распределения электронов и зарядов на ионах, от кристаллической структуры и от отношения радиуса катиона к радиусу аниона. Полинг разработал полуэмпирический метод определения ряда ионных радиусов на основе найденных на опыте величин межионных расстояний для пяти ионных соеди нений NaF, K l, RbBr, sl и. LijO. Для первых четырех соедине ний факторы, влияющие на размеры ионов, можно считать одинаковыми, так как ионы в них изоэлектронны и одновалентны, а от ношение радиусов во всех случаях равно 0,75. Полинг допу скает, что размер иона обратно пропорционален эффективному заряду ядра, действующему на электроны, а эффективный заряд ядра 2эф равен истинному заряду ядра за вычетом постоянной экранирования эффекта S электронов иона (2эф = Z — S). Поэтому для радиусов ряда изоэлектронных ионов можно написать уравнение [c.113]

    Между титаном и цирконием имеется несомненное сходство, но есть и различие. Между цирконием и гафнием наблюдается исключительное химическое родство, объясняемое не только подобием строения электронных оболочек, но и тем, что их атомные и ионные радиусы почти одинаковы (следствие лантаноидного сжатия ). Атом же титана значительно меньше, поэтому валентные электроны у циркония и гафния расположены на больших расстояниях от ядра, более эффективно экранированы от него внутренними электронными оболочками и, следовательно, менее прочно связаны с ядром. Потенциалы иониза- [c.208]

    В этом ряду по мере уменьшения ионного радиуса увеличивается гидратация ионов и, следовательно, их дегидратирующая способность. Поэтому можно было бы ожидать, обратной закономерности — увеличения способности ионов снижать ККМ от s+ к Li+. Кажущееся противоречие обусловлено тем, что образование гидратной оболочки экранирует заряд противоионов и снижает их способность связываться с поверхностью мицеллы. Между тем связывание противоионов приводит к уменьшению плотности поверхностного заряда мицелл и снижению электрических сил отталкивания, препятствующих мицеллообразованию. Действие этого фактора уменьшается в ряду от s+ к Li+, и наблюдается снижение эффективности влияния противоионов на ККМ. [c.63]


    Ковалентные и ионные радиусы уменьшаются при движении слева направо по периодам Периодической таблицы. В первом коротком периоде (11 — Р) заряд ядра атома увеличивается от 3 до 9. Из-за увеличения заряда ядра К-электроны приближаются к ядру и радиус Д -оболочки уменьшается. Влияние этого обстоятельства на электроны -оболочки осложняется тем, что они экранированы от ядра Л -оболочкой и эффективно действующий ядерный заряд оказывается меньше действительного заряда ядра атома. Например, у лития внешний электрон притягивается ядром с зарядом - -3, экранированным двумя электронами. Вследствие чего значение действующего заряда оказывается ближе к +1, чем к +3. У бериллия -электроны экранированы двумя электронами, что приводит к уменьшению действующего на них заряда от +4 приблизительно до +2. Тем не менее при движении по периоду слева направо эффективные заряды ядер увеличиваются, что является причиной постепенного уменьшения атомных радиусов (см. рис. 15.4, б). Радиусы ионов с одинаковыми зарядами (например, M + ) изменяются аналогично. [c.361]

    Сольватация вносит значительный вклад в свободную энтальпию процесса растворения. Наблюдаются существенные различия в специфическом взаимодействии растворителя и растворенной частицы. Электрофильные частицы, например катионы, сольватируются преимущественно ДПЭ-растворителями. Вследствие присоединения молекул растворителя значительно увеличивается эффективный ионный радиус. Так, например, в диметилсульфоксиде размеры сольватированного иона лития. достигают размеров иона тетрабутиламмония. Основные центры молекул растворителя (атомы О, N или 5) в сольватной оболочке ориентированы к иону металла. Связь имеет характер [c.448]

    Первоначально сложилось представление об эффективных радиусах атомов, проявляющихся в их действиях, т. е. в химических соединениях. Эффективные радиусы определяли из экспериментальных данных по межъядерным расстояниям в молекулах и кристаллах. При этом предполагалось, что атомы представляют собой несжимаемые шары, которые соприкасаются своимн поверхностями в соединениях. При определении значения эффективного радиуса из межъядерных расстояний в ковалентных молекулах подразумевали ковалентные радиусы, при вычислении их из данных для металлических кристаллов — металлические радиусы. Наконец, эффективные радиусы, рассчитанные для кристаллов с преимущественно ионной связью назывались ионными радиусами. Для этого определяли радиус какого-нибудь иона, а затем вычисляли ионные радиусы других элементов из экспериментальных данных по межъядерным расстояниям в кристаллических решетках. Так, с помощью оптических методов, а затем расчетом был определен радиус аниона фтора, равный 0,113 нм. А расстояние между ядрами N3 и Р в решетке ЫаР было установлено равным 0,231 нм. Отсюда радиус иона Ыа+ 0,231—0,113 = 0,098 нм. Металлические радиусы получены делением пополам расстояния между центрами двух смежных атомов в кристаллических решетках металлов. Ковалентные радиусы неметаллов также вычислены как половина межъя-дерного расстояния в молекулах или кристаллах соответствующих [c.67]

    Диффузный слой — это часть двойного электрического слоя, в котором концентрация ионов меняется под воздействием электродного потенциала от величины ее в адсорбционном слое (гельмгольцевский слой, толщина которого равна ионному радиусу) до равновесной концентрации в глубине электролита. Эффективная толщина диффузного слоя 10- — 10" см. [c.20]

    Первоначально сложилось представление об эффективных радиусах атомов, проявляющихся в их действиях, т.е. в химических соединениях. Эффективные радиусы определяли из экспериментальных данных по межъядерным расстояниям в молекулах и кристаллах. При этом предполагалось, что атомы представляют собой несжимаемые шары, которые соприкасаются своими поверхностями в соединениях. При определении значения эффективного радиуса из межъядерных расстояний в ковалентных молекулах подразумевали ковалентные радиусы, при вычислении их из данных для металлических кристаллов — металлические радиусы. Наконец, эффективные радиусы, рассчитанные для кристаллов с преимущественно ионной связью, назывались ионными радиусам[и. Для этого определяли радиус какого-нибудь иона, а затем вычисляли ионные радиусы других элементов из экспериментальных данных по межъядерным расстояниям в кристаллических решетках. Так, с помощью оптических методов, а затем расчетом был определен радиус аниона фтора, равный 0,11.3 нм. А расстояние между атомами Na и Г в решетке МаГ было установлено равным 0,231 нм. Отсюда радиус иона Ма равен 0,231 — 0,113 = 0,118 нм. Металлические радиусы получены делением пополам расстояния между центрами двух смежных атомов в кристаллических решетках металлов. Ковалентные радиусы неметаллов также вычислены как половина межъядерного расстояния в молекулах или кристаллах соответствующих простых веществ. Для одного и того же элемента эффективные радиусы (ковалентный, ионный, металлический) не совпадают между собой. Это свидетельствует о зависимости эффективных радиусов не только от природы атомов, но и от характера химической связи, координационного числа и других факторов (см. табл. 4). Изменение эффективных радиусов атомов носит периодический характер (рис. 22). В периодах по мере роста заряда ядра эффективные радиусы атомов уменьшаются, так как происходит стягивание электронных слоев к ядру (при постоянстве их числа для данного периода). Наибольшее уменьшение характерно для 5- и р-элементов. В больших периодах для и /-элементов наблюдается более плавное уменьшение эффективных радиусов, называемое соответственно г- и /сжатием. Эффективные радиусы атомов благородных газов, которыми заканчиваются периоды системы, значительно больше эффективных радиусов предшествующих им р-элементов. Значения эффективных радиусов благородных газов (см. табл. 4) получены из межъядерных расстояний в кристаллах этих веществ, существующих при низких температурах. А в кристаллах благородных газов действуют слабые силы Ван-дер-Ваальса в отличие, например, от молекул галогенов, в которых имеются прочные ковалентные связи. [c.52]


    Шкала ионных радиусов по Полингу составлена в предположении, что радиусы пары изо лектронных ионов Na+ и р- обратно пропорциональны эффективному ядерному заряду. [c.175]

    Для рассмотрения влияния свойств иона металла на устойчивость комплекса удобно разделить все ионы на категории, описанные выше (см. стр. 242). Целесообразность такого разделения заключается в том, что число основных факторов, влияющих на устойчивость комплексов, образованных металлами I—П1 категорий, меньше, чем для ионов металлов IV категории. В первых трех категориях ионы металла (или атомы) имеют сферическую симметрию, и устойчивость комплексов, образованных ими, зависит главным, образом от их эффективного ионного радиуса и эффективного за ряда ядра атома. [c.288]

    Кроме того, эффективный заряд ядер и эффективное квантовое число широко используют для расчета поляризуемости атомов и ионов, их радиусов, а также электроотрицательности элементов. Рассмотрим в качестве примера вопросы, связанные с представлениями об атомных и ионных радиусах, а также способы их расчета [c.225]

    Атомные радиусы убывают в последовательности 8 > С1 > Аг, поскольку при переходе от 8 к С1 и от С1 к Аг заряд ядра возрастает на единицу. В пределах одного периода валентные электроны сильнее притягиваются к ядру с возросшим положительным зарядом, поэтому атомные радиусы соответственно уменьшаются. Для изоэлектронных (имеющих одинаковое число электронов) атомных и ионных частиц эффективные радиусы уменьшаются по мере возрастания заряда ядра (порядкового номера элемента), так как и в этом случае происходит последовательное увеличение притяжения электронов к ядру. Таким образом, указанные изоэлек-тронные частицы в порядке уменьшения эффективных радиусов располагаются в следующий ряд 8 > С1 > Аг > К > Са .  [c.405]

    Атомные и ионные радиусы строго следуют закономерности, лежащей в основе периодического закона Д. И. Менделеева существует определенная связь между положением элемента в периодической системе и эффективными радиусами его атомов и образуемых им ионов. [c.125]

    Z = 5,75, а ионный радиус— 1,81А. Отсюда i-=3,2 тех же единиц. Сравнение Na+ и Eq- показывает, что при контакте ионов Na+ и С1 должен происходить переход часть электронного облака от аниона к катиону, т. е. должен уменьшаться формальный ионный заряд до некоторого эффективного значения. [c.102]

    J Атомные и ионные радиусы. Чтобы вычислить радиус атома, полагают, что он имеет шарообразную форму. Можно считать, что атомы в кристалле простого вещества касаются своими сферами. Расстояние между центрами двух соседних атомов в кристаллической решетке — важнейшая константа, называемая постоянной кристаллической решетки, обозначаемая d. Если соседние атомы одинаковы (простое вещество), то частное d/2 равно радиусу атома. Такие радиусы получили название эффективных или кажуш,ихся радиусов. [c.89]

    Вследствие радиального действия электростатических сил в ионных кристаллах при отсутствии искажающего влияния поляризации ионов каждый ион окружается другими в соответствии с принципом наиболее плотной упаковки, т. е. наибольшим возможным числом ионов другого знака заряда. Координационные числа в таких случаях зависят от отношения так называемых эффективных ионных радиусов rv.trТак как радиус катиона обычно меньше радиуса аниона, то, например, для соединений типа АВ упаковка с координационным числом 12 в ионных решетках не достигается. Для ионных соединений типа АВ наиболее вероятна упаковка с координационным числом 8 ( s I) при ГК/га = 1—0,73 6 (Na l) — при гк/ал = 0,73—0,41  [c.129]

    Рассмотрим основные закономерности изменения характера ионизации гидроксидов в растворе в зависимости от положения элемента в Периодической системе. В ряду элементов П1 периода от натрия к хлору степень окисления растет, а эффективные ионные радиусы уменьшаются. Ниже приведено изменение ионных радиусов элементов П1 периода в высшей степени окисления  [c.263]

    Эффективный радиус иона — это радиус сферы действия иона в данном кристалле. Он не является для данного иона (как и радиус атома) строго определенной величиной, зависит от типа связи и от координационного числа. Эффективные радиусы находят из расстояний d между центрами соседних ионов. Эти расстояния определяются с большой точностью современными методами рентгеноструктурного анализа (Вульф, Брэгги, Дебай и др.). Их приравнивают сумме радиусов ионов. Например, у Na l длина ребра элементарной ячейки найдена равной 5,62 А. откуда d = 2,81 А У фторида натрия d = 2,31 А и т. д. Однако, чтобы найти ионные радиусы, нельзя d просто делить пополам, как это делается при вычислении радиусов атомов в атомных решетках простых веществ. Надо знать, по крайней мере, радиус одного иона, найденный тем или другим способом. Наиболее надежная исходная величина была получена для иона [c.129]

    Поскольку величина d равна эффективному ионному радиусу, то емкость С прежде всего зависит от природы ионов, образующих жидкостную обкладку двойного слоя. [c.189]

    Расщепление -уровней центрального атома сказывается на ряде свойств соединений переходных металлов. Рассмотрим основное — его влияние на эффективные ионные радиусы. Объектом для сравнения должны при этом служить [c.465]

    Формула Капустинского (39.18) широко применяется в термохимии для расчета некоторых неизвестных теплот. Так, по формуле (39.19) цикла Борна — Габера можно найти теплоту образования кристалла, если известны теплоты образования крнов и энергия решетки. Последнюю легко рассчитать по уравнению Капустинского. Аналогично можно найти неизвестную теплоту образования газообразного иона и связанные с ней величины, например сродство атома к электрону. Если в узлах решетки находятся сложные ионы (ионы SO 4- в NajSQt, NH/ в ННц,С1и др.), то, пользуясь термохимическим значе-. нием энергии решетки, можно по формуле Капустинского рассчитать эффективный радиус сложного иона. Эти эффективные так называемые термохимические радиусы пригодны затем для расчета по формуле (39.18) энергии решеток, содержащих сложные ионы. Эта формула и ее модификации широко использованы в химии комплексных соединений К. Б. Яцимирским [к-8]. Зная экспериментальные теплоты растворения солей и энергии решетки по Капустинскому, можно рассчитать из термохимического цикла теплоты сольватации солей, широко используемые в теории растворов. [c.170]

    В химической практике наиболее широко используются так называемые эффективные (т. е. проявляющие себя в действии) радиусы атомов, рассчитанные из эк.с-периментальных данных по межъядерным расстояниям в молекулах и кристаллах. На размер таких радиусов оказывают влияние различные факторы (структура вещества, характер связи, степень окисления элементов и т. д.). Поэтому необходимо различать радиусы атомов в соединениях с ковалентной, металлической и ионной связями (соответственно ковалентные, металлические и ионные радиусы). Ковалентные и металлические радиусы по смыслу отвечают понятию атомный радиус . [c.46]

    Эффективные радиусы, рассчитанные для кристаллов с преимущественно ионным типом связи, получили название ионных радиусов. При этом различают радиусы положительных ионов (катионов), которые всегда меньше атомных радиусов соответствующих элементов, и радиусы отрицательных ионов (анионов), которые больше атомных радиусов. Межъядерное расстояние рассматривается как сумма ионных радиусов катиона и аниона. [c.51]

    Для нахождения теплот гидратации отдельных ионов подбирают постоянные так, чтобы значения величин Ягидр как функции от обратной величины эффективных ионных радиусов (г + Д) укладывались на одну прямую, т. е. предполагают, что + = l. При этом условии [c.157]

    Следующим членом С/(г -Ь учитывается притяжение силами Ван-дер-Ваальса. Этот член мал по сравнению с другими членами. Если открыть скобки в уравнении (IV,47), то получим, что первый член является функцией некоторой величины, деленной на г1 (/ = г Гд — эффективный ионный радиус), а этот третий член равен некоторой величине, деленной на гЛ, четвертый член является функцией 1/гц и учитывает изменение дипольного момента в поле иона К = д. 11йР. [c.174]

    Энергия кристаллической решетки гетерополярных соединений теснейшим образом связана с зарядом ионов и эффективным радиусом их энергия взаимодействия между ионами тем больше, чем меньше эффективный радиус и чем больше заряд иона. Отношение заряда иона к его радиусу — величина очень важная, определяющая многие свойства гетерополярных соединений. Это соотношение, в частности, является важнейшим показателем, от которого зависит энергия кристаллической решетки чем больше заряд иона и чем меньше его радиус, тем выше энергия решетки. Отсюда, как следствие, тем выше твердость, температуры плавления и кипения, энергия сублимации . И наоборо большие величины радиусов ионов и малая плотность их упакО Зки (значительные расстояния между центрами частиц), уменьшая энергию решетки, способствуют легкоплавкости вещества и понижают его твердость, [c.122]

    Ионные кристаллы. Особенности ионных решеток. Типы решеток s I, Na l и др. Эффективные ионные радиусы и координационные числа в ионных решетках. Периодичность изменения ионных радиусов. Свойства веществ с ионными решетками. Энергия ионных и металлических решеток. Ионные кристаллы строятся из положительных [c.127]

    Однако в фактически наблюдаемой последовательности ион NO3 надо поставить раньше иона С1 . Нитрат-ион ведет себя, как если бы его радиус был значительно меньше. Перхлорат-ион ведет себя так, как это можно ожидать у него склонность к комплексообразованию выражена очень слабо. Различие в поведении NO3 и IO4 вытекает из различий в их структуре. IO4 имеет тетраэдрическое строение, связи атома хлора с атомами кислорода равноценны, поэтому ион слабо поляризуется. У NO3, являющегося компланарным ионом, связь N — О частично носит ионный характер, вследствие чего он сильно поляризован и имеет эффективный ионный радиус, меньший, чем геометрический. Большой поляризуемостью NO3 объясняется его аномальное поведение. Поляризуемость анионов увеличивается в ряду [c.305]

    Учитывая сложное строение двойного электрического слоя, необходимо брать ф = фа— фь где i i — потенциал двойного слоя на расстоянии ионного радиуса от поверхности электрода. Очевидно, что величина этой емкости в первую очередь зависит от толщины двойного слоя, т. е. от того, на какое расстояние сближаются между собой противоположные заряды по обе стороны границы раздела. Поскольку величина d равна эффективному ионному радиусу, то емкость с прежде всего зависит от при1зоды ионов, образующих жидкостную обкладку двойного слоя. [c.236]

    Приведенные в этом параграфе и далее значения эффективных ионных радиусов определены исходя из характеризующихся координационным числом 6 структур типа Na l, причем за основу брали соединения, в которых взаимное влияние химической природы ионов должно быть минимальным. При переходе к координационному числу 4 значения ионных радиусов следует уменьшать приблизительно на 6%, а при переходе к коордииацнопному числу 8 — увеличить на 4%. [c.385]

    Эффективныйрадиусиона — это радиус сферы действия пона в данном кристалле. Он не является для данного иона (как и радиус атома) строго определенной величиной, так как зависит от типа связи и от координационного числа. Эффективные радиусы определяют из расстояний d между центрами соседних ионов. Эти расстояния определяются с большой точностью современными методами рентгеноструктурпого анализа (Вульф, Брэгги, Дебай и др.). Их приравнивают сумме радиусов ионов. Например, у Na l длина ребра элементарной ячейки найдена равной 0,562 нм, отк -да d= = 0,281 нм, у фторида натрия Л=0,231 нм и т. д. Однако, чтобы определить ионные радиусы, нельзя d просто делить пополам, как это делается при вычислении радиусов атомов в атомных решетках простых веществ. Надо знать, по крайней мере, радиус одного иона, найденный тем или другим способом. Наиболее надежное исходное значение было получено для иона F (0,133 нм) с помощью оптических методов, зная которое можно определить радиусы = 0,231—0,133 = 0,098 нм Гс,- = = 0,281—0,098=0,183 нм и т. д. Таблицы ионных радиусов приведены в справочной литературе. [c.160]

    Размер эффективного радиуса атомов и ионов зависит также от характерной для данной структуры координационного числа (к. ч.). Так, если при к. ч. 8 металлический радиус атома Na равен 0,160 нм, то при к. ч. 12 он должен составить 0,189 нм. Значения металлических радиусов обычно приводят для к. ч. 12, а ионных — для к. ч. 6 (структурный тип Na l). В определении значений атомных и ионных радиусов принадлежит особая заслуга В. Гольдшмидту, Л. Полингу, Н.В. Белову. [c.171]

    Теперь сопоставим силу солей, образованных разными катионами с одним и тем же анионом, в основных (донорных) растворителях. Здесь с увеличением собственного ионного радиуса катиона, то есть с уменьшением их кислотности, степень сольватации будет уменьшаться. Вот почему реальный радиус сольватирован-ного иона (эффективный ионный радиус) в ряду Ь " — Сз" будет падать и, следовательно, в соответствии с законом Кулона энергия притяжения катиона к аниону будет увеличиваться. Прогноз сила электролитов в ряду — СзА в основных растворителях должна падать. Эксперимент в тетрагидрофуране (основный растворитель) константы диссоциации фторидов лития, натрия и цезня равны, соответственно, 4-10 , 6,4-10 и 1.4-10 [c.58]


Смотреть страницы где упоминается термин Ионный радиус, эффективный: [c.430]    [c.192]    [c.570]    [c.53]    [c.71]    [c.78]    [c.102]    [c.241]    [c.17]    [c.82]    [c.54]    [c.159]    [c.130]    [c.59]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.61 ]

Курс теоретических основ органической химии (1959) -- [ c.58 ]




ПОИСК





Смотрите так же термины и статьи:

Ионные радиусы

Радиусы ионов

Радиусы эффективные

Эффективный радиус ионов

рий радиус иона



© 2024 chem21.info Реклама на сайте