Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородный электрод влияние давления

    Обратимый равновесный потенциал водородного электрода существует лишь на электроде, покрытом платиновой чернью. На всех остальных металлах водород осаждается с более или менее значительным перенапряжением. Перенапряжение водорода, как и все поляризационные процессы, изменяется в Зависимости от режима работы. Оно уменьшается при возрастании температуры и имеет различную величину в зависимости от природы катодного металла. Кроме того, оказывают влияние состояние поверхности катода, давление водорода, значение pH раствора, продолжительность электролиза, вид и состав электролитов. [c.36]


    И, наконец, влияние давления водорода на потенциал водородного электрода. Повышение давления увеличивает э. д. с. водородно-каломельного элемента на величину, равную [c.61]

    Водородный электрод состоит из платиновой пластинки или проволоки, покрытой платиновой чернью (мелкодисперсной платиной). Пластинка (проволока) погружена в раствор, в котором (НзО ") = 1 моль/л и давление газообразного водорода над которым 0,1 МПа. Под каталитическим влиянием платиновой черни в электроде обратимо осуществляется переход  [c.90]

    Рассмотрим для примера влияние давления на потенциал водородного электрода, измеренный по отношению к хлорсеребряному. Ячейку в этом случае можно представить в виде [c.42]

    Очевидно, что во всем интервале pH равновесный потенциал кислородного электрода положительнее равновесного потенциала водородного примерно на 1,23 В, т. е. с термодинамической точки зрения коррозия с водородной деполяризацией менее вероятна. Реализация термодинамической возможности зависиг, однако, от кинетических факторов, которые оказывают влияние на поляризуемость электрода, т. е. на перенапряжение электродных реакций. Поскольку перенапряжение электродных реакций зависит от состава и концентрации электролита, содержания в нем поверхностно-активных веществ, температуры, давления и скорости данного процесса, тип электродной реакции определяется комплексными условиями. [c.22]

    В сосудик своеобразной формы наливают раствор серной кислоты такой концентрации, чтобы [Н" ] = 1 г-ион/л. В кислоту опускают платиновую пластинку, покрытую мелкораздробленной губчатой платиной (платиновой чернью), что сильно увеличивает поверхность соприкосновения металла с водородом. Платину насыщают водородом, поступающим в полуэлемент под давлением 760 мм рт. ст. (давление, под которым находится газ, оказывает существенное влияние на величину потенциала водородного электрода). Такая насыщенная водородом платиновая пластинка электрохимически ведет себя так, как будто бы она представляет собой твердый водород. Разность потенциалов на границе Р1, Н2/2Н имеет определенную величину, которую условно принимают равной нулю. [c.345]

    Метод, применяемый для измерения перенапряжения при определенных плотностях тока, в принципе подобен методу, описанному на стр. 565, причем пользуются катодом, площадь которого известна. Раствор должен быть в достаточной степени освобожден от растворенного кислорода или других способных восстанавливаться веществ. Обычно для этого раствор насыщают водородом при атмосферном давлении. Анодный раствор должен быть изолирован от катодного, чтобы предотвратить доступ кислорода, выделяющегося на аноде, к катоду. Некоторые исследователи, изучавшие перенапряжение, пренебрегали этими предосторожностями, и поэтому наблюдавшиеся ими явления были связаны с влиянием побочных факторов, не связанных с основной изучаемой зависимостью перенапряжения от плотности тока. В течение времени, достаточного для того, чтобы достигнуть устойчивого значения потенциала, через ячейку пропускают ток определенной силы, затем измеряют потенциал катода путем сочетания катода с электродом сравнения, например с каломельным. Если в качестве электрода сравнения употребляется водородный электрод в исследуемом растворе с платинированной платиной в качестве электрода, то измерение разности потенциалов между ним и катодом непосредственно дает величину перенапряжения. Если употребляется какой-нибудь другой электрод сравнения, то его потенциал относительно водородного электрода в данном растворе может быть либо непосредственно измерен, либо [c.614]


    В практических случаях коррозионных процессов металлов довольно часто приходится встречаться с потенциалами, приводимыми к потенциалам газовых электродов, обычно к водородному. Например, при растворении ряда металлов с низким перенапряжением водорода (железо, никель) в кислоте устанавливается потенциал, соответствующий равновесному газовому водородному электроду, т. е. имеющий характерную для водородного электрода зависимость от pH и давления водорода. В этом случае основным процессом, определяющим потенциал, является процесс Н Н , сам же процесс растворения металлов имеет сравнительно с первым малую скорость и не оказывает существенного влияния на установление потенциала. [c.90]

    Влияние УЗ на химические реакции проявляется через повышение температуры, концентрации реагентов, увеличение давления. Кроме этого под влиянием УЗ в кавитационном пузырьке могут образовываться радикалы, изменяться сольватация, разрываться водородные связи и полимерные цепи. При УЗ-обработке гетерогенной системы (твердое тело - жидкость, жидкость - жидкость) происходит дробление частиц, увеличение поверхности перемешивания, образование эмульсий с большой поверхностью контакта. УЗ в подготовке проб пищевых продуктов и объектов окружающей среды применяется для перемешивания и измельчения материалов, получения вытяжек из почв, аэрозольных фильтров, генерации реакционноспособных радикалов, очистке поверхностей посуды и электродов. В электрохимических системах применение УЗ облегчает транспорт ионов (подобно перемешиванию), удаляет пузырьки газа с поверхности, активирует электрод, улучшает качество металлических покрытий, влияет на скорость электрохимических реакций. [c.51]

    Хиллс и Киннибрух [354] исследовали влияние давления на кинетику катодного выделения водорода на ртути и получили ток обмена для реакции выделения водорода на ртути как функцию давления. При постоянном перенапряжении л > т.е. при постоянном потенциале рабочего электрода по отношению к водородному электроду, в той же [c.527]

    Электродные процессы всегда протекают на границе фаз. Особенностью этих реакций является то, что они зависят еще от одной интенсивной переменной — потенциала или поля,— влияющей нз свободную энергию а) адсорбции реагентов, б) адсорбции промежуточных частиц и в) активации реакции. Что касается последнего, то роль потенциала аналогична роли давления, например в изменении скоростей реакций в конденсированных фазах. На протекание электродных реакций оказывают влияние также специфические поверхностные свойства металлов, такие, как работа выхода электрона, поверхностная концентрация дефектов, энергия адсорбции промежуточных и исходных частиц, и именно в этом отношении можно говорить о предмете электрокатализа. Аналогично тому как скорость реакции обмена Нз — Вг меняется в весьма широких пределах при катализе на различных металлах и окислах, кинетическая степень электрохимической обратимости, например в случае реакции выделения водорода при обратимом потенциале, изменяется более чем на одиннадцать порядков при переходе от активной платины к гладкому свинцу. Позднее электрокатализом стали называть реакции электрохимического окисления органических соединений, протекающие через стадию диссоциативной хемосорбции на электроде, в которых специфические эффекты каталитической диссоциации тесно связаны с электрохимическими процессами переноса заряда. Однако подобное толкование термина электрокатализ не является новым по существу, аналогичные стадии каталитической диссоциации и электрохимической ионизации имеют место в реакции водородного электрода, исследовавшейся с подобной точки зрения Фрумкиным и его сотрудниками начиная с 1935 г. Таким образом, большое значение в электрокатализе имеет электрохимическое поведение промежуточных частиц, возникающих либо в стадиях перехода заряда, либо в результате диссоциативной хемосорбции, предшествующей или сопутствующей стадии перехода заряда. Большое количество рассматриваемых работ было посвящено исследованию реакций выделения и растворения водорода и кислорода, а в последнее время — реакций окисления органических соединений. [c.392]

    Равновесный потенциал (ф) этой реакции при 25° С и давлении кислорода 1 атм составляет 1,229 в [4]. (Потенциалы здесь и далее приводятся относительно равновесного потенциала водородного электрода в том же растворе.) Однако на различных электродах наблюдаются значения, как правило, менее положительные, чем теоретическое значение, на 100 мв и более. Реакция ионизации кислорода, идзщая с участием четырех электронов, включает промежуточные стадии с участием одного или двух электронрв. Некоторые из этих стадий могут быть потенциалопределяющими. Кроме того, возможно влияние адсорбированного на поверхности электрода кислорода, а также взаимодействие его с промежуточными продуктами реакции. В общем случае возможны по крайней мере два направления реакции  [c.138]


    Исследование восстановления кислорода проводилось по методике, описанной в работе [6]. Рабочая часть кислородного электрода представляла собой пористую углеграфитовую подложку с пироуглеродным покрытием. Нанесение фталоцианинов на подложку осуществлялось без связующего осаждением их из раствора в концентрированной серной кислоте разбавлением водой. Опыты проводились в 32%-ном растворе калиевой щелочи в интервале температур 25—90°С. Давление кислорода составляло 0,1 атм. Измерение потенциала кислородного электрода производилось относительно окисно-ртутного электрода. В дальнейшем потенциал приведен относительно водородного электрода в том же растворе. Было исследовано влияние фталоцианинов Ре , N 1 и Си на потенциал кислородного электрода без тока и при наложении внешнего тока. [c.117]

    Хорошо известно, что на водородную функцию электрода заметное влияние оказывает содержание воды в стеклянной мембране. Габер и Клеменсиевич [2] показали, что электроды, сохранявшиеся сухими, обнаруживают плохую водородную функцию. Некоторые электроды, соверщенно лишенные водородной функции, вновь приобретали ее после обработки перегретым водяным паром под давлением. Мак-Иннес и Бельчер [12] установили, что электрическое сопротивление стеклянных электродов при 25° С после 10-дневного их высушивания над фосфорным ангидридом возрастало на 230% по сравнению со средней величиной сопротивления для этой температуры. После погружения этих электродов в воду сопротивление медленно возвращалось к своей первоначальной величине. Перли [21] обнаружил, что электроды из некоторых литиево-силикатных стекол меньше подвержены действию высушивающих агентов, чем электроды из стекла Корнинг 015. Как известно, литиевые стекла адсорбируют лишь одну девятую часть воды по сравнению с калиевыми и натриевыми стеклами [22]. [c.264]

    Хорошо известно, что на водородную функцию электрода заметное влияние оказывает содержание воды в стеклянной мембране. Габер н Клеменсиевич [2] показали, что электроды, сохранявшиеся сухими, обнаруживают плохую водородную функцию. Некоторые электроды, совершенно лишенные водородной функции, вновь приобретали ее после обработки перегретым водяным паром под давлением. Мак-Иннес и Бельчер [12] установили, что электрическое сопротивление стеклянных электродов при 25°С после 10-дневного их высушивания над фосфорным ангидридом возрастало на 230% по сравнению со средней величиной сопротивления для этой температуры. После погружения этих электродов в воду сопротивление медленно возвращалось к своей первоначальной величине. Перли [c.264]

    Исследование влияния мономерных и полимерных фталоцианинов металлов на электрохимическое ловедение кислородного электрода проводилось в 7,5 н. растворе калиевой щелочи марки х. ч. с гидрофобизи-рованным пористым электродом, имеющим рабочую внешнюю поверхность 8 см . Измерение потенциала осуществлялось относительно окис-но-ртутного электрода. В дальнейшем потенциал выражен в нормальной водородной шкале. Поляризационные кривые восстановления кислорода снимали нри избыточном давлении О2, равном 10—20 мм водяного столба после предварительной катодной поляризации электрода плотностью тока 300 мА/см . [c.93]


Смотреть страницы где упоминается термин Водородный электрод влияние давления: [c.310]    [c.189]    [c.195]    [c.259]    [c.201]    [c.559]   
Определение pH теория и практика (1972) -- [ c.211 , c.213 ]

Определение рН теория и практика (1968) -- [ c.211 , c.213 ]




ПОИСК





Смотрите так же термины и статьи:

Водородный электрод



© 2025 chem21.info Реклама на сайте