Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электродные реакции электроды, водородные

    К тому же уравнению можно прийти, рассмотрев частные электродные реакции. На водородном электроде протекает реакция ионизации водорода [c.190]

    Так как в уравнение электродной реакции для водородного и кислородного электродов входит, кроме газовой фазы (Нг или О2), также ион водорода (Н+) или ион гидроксила (ОН ), то потенциалы водородного и кислородного электродов, кроме парциального давления соответствующего газа, будут зависеть также от концентрации водородных ионов (pH) эта зависимость аналогична обычной зависимости для равновесного потенциала, определяемой формулой (2), которую можно получить из формул (9) и (10), полагая давление Р постоянным. [c.138]


    Потенциал сложного редокси-электрода является функцией не только активностей окисленных н восстановленных частиц, но и активности водородных ионов. Характер зависимости потенциала редокси-электрода от активности водородных ионов определяется при этом природой реагирующих частиц. Так, иапример, для системы МпО -—Мп2+, в которой протекает электродная реакция [c.171]

    Из общего уравнения для электродного потенциала (7.14) следует, что при заданной температуре потенциал любого электрода определяется составом системы и его стандартным потенциалом, значение которого не зависит от активностей участников электродной реакции и представляет собой константу, характерную для данного. электрода. В табл. 8.1 приведены значения стандартных потенциалов некоторых электродов по водородной шкале, а также соответствующие электродные реакции. [c.178]

    При замедленной рекомбинации для протекания реакции выделения водорода с заданной скоростью на поверхности металла необходим избыток водородных атомов по сравнению с равновесными условиями. При равновесии, т. е. при обратимом значении потенциала водородного электрода, между всеми стадиями электродной реакции существует детальное равновесие  [c.408]

    Абсолютное значение ф< измерить невозможно, так как в любом гальваническом элементе протекают две электродные реакции, и его напряжение равно разности электродных потенциалов. Поэтому приходится пользоваться относительными электродными потенциалами. Условно принимают равной нулю величину ф° водородного электрода (платиновый электрод в растворе кислоты, насыщенной водородом) при 25°С, давлении водорода 101 кПд и при концентрации ионов водорода в водном растворе, равной 1 моль/л. Такая условность не сказывается на получаемых ре-зультата х, так как приходится иметь дело не с абсолютными величинами, ас разностью двух величин. [c.192]

    При использовании уравнения (175.14) для расчета потенциалов газовых электродов активность газов (при небольших давлениях) выражается их парциальным давлением. Активность воды, за исключением очень концентрированных растворов, практически не меняется при протекании электродной реакции и может быть принята равной единице. Потенциал водородного электрода [c.480]

    Содержание газообразного вещества, участвующего в электродной реакции, принято выражать в единицах давления чистого газа или его парциального давления в газовой смеси (в единицах летучести и парциальной летучести при высоких давлениях). Потенциал водородного электрода описывается уравнением [c.279]


    В 1953 г. Международным союзом по чистой и прикладной химии (ШРАС) было принято, что потенциалом электрода считается его потенциал при условии, что электродная реакция протекает в сторону восстановления. Это согласуется с физической концепцией, где потенциал определяется как работа, необходимая для перенесения единичного положительного заряда в точку, потенциал которой определяют. Это определение имеет еще и то преимущество, что соответствует знаку полярности вольтметра или потенциометра, к которым может быть присоединен электрод. Таким образом, цинк имеет отрицательный потенциал восстановления и является отрицательным полюсом гальванического элемента, где в качестве второго электрода использован стандартный водородный электрод. [c.35]

    В электродной реакции участвуют газообразные вещества, в результате адсорбции которых поверхностью металла могут быть получены газовые электроды (водородный, кислородный, хлорный и пр.). Для этой цели платинированный платиновый электрод погружают, например, в раствор, насыщенный при давлении, равном 1 атм, газообразным Н2. Для образующейся системы справедлива следующая электрохимическая реакция  [c.24]

    Стеклянный электрод отличается от уже рассмотренных электродов тем, что в соответствующей ему электродной реакции не участвуют электроны. Наружная поверхность стеклянной мембраны служит источником водородных ионов и обменивается ими с раствором подобно водородному электроду. Иными словами, электродная реакция сводится здесь к обмену ионами водорода между двумя фазами — раствором и стеклом Н+=Н+ст. Поскольку заряд водородного иона соответствует элементарному положительному коли- [c.242]

    Водородный электрод. Нормальный или стандартный водородный электрод представляет собой платиновую пластинку, покрытую платиновой чернью, и частично погруженную в раствор, в котором активность ионов водорода равна единице, а давление водорода в газовой фазе — 1 атм. Потенциал такого электрода условно принимают равным нулю. Электродная реакция, протекающая на платине, [c.294]

    Разность равновесных потенциалов электродных реакций называется обратимым напряжением разложения электролита Uq- Последнее численно равно э. д. с. электрохимической цепи, в которой протекает реакция, обратная реакции при электролизе. Например, обратимое напряжение разложения воды равно э. д. с. водородно кислородной цепи, при отборе тока от которой идет синтез воды из водорода и кислорода (см. 178). При 298 К э. д. с. этой цепи, а следовательно, и Uo равны 1,23 В. Учитывая соответствие между э. д. с. и обратимым напряжением разложения, последнее можно определить по термодинамическим данным согласно (175.9). При электролизе воды происходит выделение водорода на катоде и кислорода на аноде, причем каждый процесс сопровождается свойственным ему перенапряжением, зависящим, в первую очередь, от материала электродов [c.515]

    Значок О поставлен внизу, чтобы подчеркнуть, что в уравнении в общем случае используется стандартный потенциал данной окислительно-восстановительной электродной реакции относительно некоторого выбранного электрода сравнения (лишь по водородной шкале о= = ). [c.126]

    Среди окислительно-восстановительных электродов выделяют газовые электроды. Газовый электрод состоит из инертного металла (часто платины или платинированной платины), к которому подводится электрохимически активный газ. Молекулы газа адсорбируются на поверхности металла, распадаясь при этом на атомы, а адсорбированные атомы участвуют уже непосредственно в электродной реакции. Поскольку между молекулами газовой фазы и адсорбированными атомами устанавливается равновесие, то при записи электродного равновесия промежуточное адсорбционное состояние часто опускают. Примером газового электрода, обратимого по катиону, является водородный электрод, на поверхности которого устанавливается равновесие  [c.134]

    Относительно потенциала стандартного водородного электрода измерены стандартные потенциалы для большого количества электродных реакций (t = 25 °С), что дает возможность решать различные электрохимические задачи. Если разместить стандартные электродные потенциалы для различных металлов так, чтобы их величины возрастали, то получится ряд напряжений, известный из общего курса химии (табл. 3, с. 330). Указанная последовательность стандартных электродных потенциалов металлов в значительной мере соответствует последовательности изменения их свойств и поэтому служит важным ориентиром при оценке возможности протекания различных реакций. [c.325]

    Металлоксидные электроды представляют собой своеобразные водородные электроды, так как ан <2он+=- в и аон =- в/ан+. Для электрода используют сурьму, висмут, вольфрам, молибден, серебро, ртуть, свинец и другие металлы, покрытые пленкой своего окисла (или гидроокиси), который трудно растворяется в исследуемом растворе. Наиболее изучены и чаще всего применяются сурьмяный и висмутовый электроды. Сурьмяный электрод характеризуется равновесной электродной реакцией [c.161]


    Записанный справа от уравнения реакции электродный потенциал — это экспериментально определяемое (иногда теоретически рассчитанное) значение ЭДС реакции при стандартных условиях (298,15 К, концентрации всех веществ, кроме воды, равны по 1 моль/л) по отношению к стандартному водородному электроду. ЭДС реакций по отношению к стандартному водородному электроду будем называть стандартными потенциалами соответствующих реакций, а разность стандартных потенциалов двух электродных реакций — ЭДС общей окислительно-восстановительной реакции. [c.262]

    Разность электродных потенциалов — это электродвижущая сила (ЭДС) гальванического элемента. Так как водородный электрод служит электродом сравнения, для которого о=ОВ, то измеряемая ЭДС рассматриваемого элемента — это потенциал медного электрода по отношению к водородному. Ниже значения электродных потенциалов будем обозначать символом Е (иногда пользуются символом ф), как и ЭДС электродных реакций. Таким образом, потенциалы металлов можно сравнивать по ЭДС гальванической цепи с водородным электродом. [c.326]

    Работа электрического тока равна произведению числа молей перенесенных электронов п, постоянной Фарадея Р = =96 484 Кл/моль и напряжения в электрической цепи. Так как электродный потенциал — это ЭДС гальванической цепи с водородным электродом, то работу электродной реакции можно рассчитать относительно работы реакции стандартного водородного электрода  [c.331]

    Другими словами, эта ячейка представляет собой простое погружение водородного и хлорсеребряного электродов в соляную кислоту. Электродные реакции следующие  [c.307]

    Так как в равновесных электродных реакциях газовых электродов участвуют газообразные компоненты, то электродные потенциалы этих электродов зависят от парциальных давлений газов. Это можно показать на примерах водородного и кислородного электродов. Равновесие на водородном электроде выражается уравнением 2Н"" + 2е  [c.193]

    Вследствие протекания электродных реакций и выделения газообразных продуктов электролиза платиновые катод и анод превращаются в водородный и кислородный электроды. Следует иметь в виду, что положение точки О (рис. 81) не остается постоянным и дает лишь некоторую ориентировку для определения величины минимального напряжения, после которого может быть осуществлен электролиз с пропусканием тока значительной плотности. [c.237]

    Этот вид торможения электродных реакций изучен еще недостаточно всесторонне. Наиболее полно механизм перенапряжения исследован лишь на примере восстановления водородных ионов. Это объясняется тем, что электродная реакция восстановления ионов водорода имеет большое практическое распространение и существенный теоретический интерес. Что касается концентрационной поляризации, то в этом случае изменения у поверхности электрода не зависят от материала электрода и вида ионов и сводятся к замедленной доставке ионов из толщи раствора в приэлектродные слои. Этот вид торможения электродной реакции зависит главным образом от диффузии, закономерности которой в настоящее время достаточно хорошо изучены. [c.242]

    Сравнивая величину перенапряжения на различных твердых катодах, нужно иметь в виду, что т] зависит от плотности тока. к, которую обычно находят как частное от деления наблюдаемой при электролизе силы тока на измеренную поверхность электрода. Но поверхность твердых тел не бывает совершенно гладкой и непосредственно измеренная величина ее не соответ ствует истинной поверхности. Для большинства твердых металлов поверхность, на которой протекает электродная реакция, в несколько раз больше, чем измеренная, т. е. действительная плотность тока в соответствующее число раз меньше. Эту особенность нужно иметь в виду при оценке величины водородного перенапряжения. Фактическое перенапряжение на твердых электродах больше, чем измеренное. Как было установлено в 1905 г. Тафелем, зависимость перенапряжения от плотности тока при до- [c.298]

    Рассмотрим правила определения знаков электродных потенциалов и записи электродных реакций согласно международной кон-ненции, принятой в 1953 г. в Стокгольме. Чтобы определить, например, знак потенциала цинкового электрода по водородной шкале, [c.276]

    Ре1Ре +1 Н+1Н, Ж где Н+I Нг — стандартный водородный электрод. Прн этом электродные реакции и обшая реакция имеют вид [c.291]

    К газовым электродам относятся водородный Н" " ] Н2, Р1, кислородный ОН" IО2, Р1, хлорный СР 1С12, Р1. Для них электродные реакции записываются как  [c.77]

    Реакция (460) протекает самопроизвольно, что соответствует понижению свободной энтальпии. При протекании электродных реакций (461) и (462) между электродами измеряется разность потенциалов е. При этом потенциал водородного электрода оказывается отрицательнее хлорного. Пр1и образовании 1 моля соляной кислоты ток совершает работу Рг, где F — число Фарадея, равное количеству электричества, необходимому для выделения при электролизе 1 г-экв. вещества (/ = 96491 А-с/г-экв.). Если в реакции принимает участие п электронов, то суммарная работа равна пР , например, для реакции (460) 2Ръ. В том случае, если процесс проводится обратимо (при бесконечно малом токе), работа системы равна изменению свободной энтальпии химической реакции. Согласно первому закону термодинамики, [c.310]

    Таким образом, платиновая пластинка или проволока, поглотившая молекулярный водород и опущенная в раствор, содержащий ионы водорода, представляет собой водородный электрод. Поскольку сама платина не участвует в электродной реакции (ее роль сводится лишь к тому, что она поглощает водород и, будучи проводни- [c.235]

    Наиболее важен водородный электрод (рис. 5.12). В нем пластинка из платины, покрытая платиновой чернью, погружена в раствор кислоты, через которую пробулькивается газообразный водород. Для электродной реакции [c.221]

    В настояшее время электродным потенциалом называют ЭДС электрохимической цепи, построенной из стандартного водородного электрода и электрода окислительно-восстановительной полуреакции. В стандартном водородном электроде (с. в. э.) платинированный платиновый электрод в растворе кислоты с единичной активностью (фактически используют растворы с а =, хотя теоретически следовало бы использовать растворы с током водорода, давление которого равно 1,01Х Х 0 Па (1 атм). Предполагается, что диффузионный потенциал на границе двух растворов элиминирован, а на границе второго элестрода с раствором протекает исследуемая окислительно-восстановительная полуреакция. При записи электродного потенциала стандартный водородный электрод всегда располагается слева Pt, Hj I H l раствор (1) Mi Pt Pt, H, I H l i раствор(II) i M, I Pt Предположим, что на границах раздела раствор(I)/Mi и раствор (11)/Мг в этих цепях осуществляются электродные процессы соответственно (Г) и (Д). Электродные потенциалы Е и Ei соответствуют, однако, не этим процессам, а полным химическим реакциям [c.126]

    Пользуясь табличными значениями стандартных электродных потенциале по водородной шкале для одного из следующих гальванических элементов, составленных из электродов 1) 2п и Ag , 2) Аи и Ад 3) каломельного и хлор-сереб-ряного 4) каломельного и (—) Ре +, Ре + (-Ь) 5) 2п и Аи 6) С1г и 2п 7) хлор-серебряного и ТР+, Т1+ 8) Со и Сё 9) А1 и Хп 10) Сс1 и Ag И) Со и Аи 12) Ае и N1 13) Т1 и 2п 14) 5п н 2п 15) Аи и А1 16) Ag и Си 17) С<1 и N1 18) водородного и хлорного 19) водородн( ГО и медного 20) водородного и цинкового 21) кислородного и водородного 22) хингидронного и хлор-серебряного 23) хингидронного и водородного 24) водородного и хлор-серебряного 25) каломельного и серебряного, вычислить %. . Написать уравнения электродных реакций. Установить, знаки электродов. Написать уравнение реакции, протекающей п гальг.аническом элементе при его работе. Вычислить константу равновесия реакции при 25° С. Вычислить стандартную максимально полезную работу и изменение изобарно-изотермического потенциала в процессе реакции, протекающей в гальваническом элементе. [c.156]

    Электродный скачок потенциала в условной шкале водородного электрода называется электродным потенциалом и обозначается ф. Он равен ЭДС электрохимического элемента, состоящего из стандартного водородцого и данного электродов. Запись такого элемента всегда начинается с водородного электрода, т. е. он считается л е-в ы м. Форма записи и знак отдельного электрода определяются правилом, утвержденным конвекцией Международного союза по чистой и прикладной химии (Стокгольм, 1953). По этому правилу слева записывается ионная форма реагирующего вещества далее прочие фазы в той последовательности, в которой они соприкасаются друг с другом. Справа должен стоять символ молекулярной формы вещества, участвующего в электродной реакции, или химический символ металла. Фазы, нанесенные на поверхность металла, отделяются запятой границы раздела жидких и твердых фаз отмечаются вертикальными черточками, а границы между жидкими фазами (растворами) — двумя вертикальными черточками (если между ними нет диффузионного скачка потенциала). Активности веществ указываются в скобках. [c.287]

    Электродный потенциал электрода, измеренный по отношению к потенциалу стандартного водородного электрода (платинированный платиноводородный электрод с = 1 атм и анзо" = 1 моль-л"электродный потенциал которого при любой температуре принимают равным 0), получают исходя из уравнения Нернста (4.1.5). Наиболее простыми электродами, применяемыми в потенциометрии, являются так называемые электроды первого рода. Они представляют собой комбинацию простое вещество — раствор электролита, при этом различают электроды, обратимые относительно катионов или анионов (табл. 4.2). При участии газов в реакциях, определяющих значение потенциала, потенциал электродов зависит от давления электрохимической реакции. [c.115]

    Таким образом, знак отдельного электрода (полуэлемента) зависит не только от того, каков заряд электрода (полуэле мента) в цепи с водородным электродом, но и от порядка записи электродной реакции. Однако во всех случаях процесс ионного обмена. протекает таким образом, что значение электродного потенциала отвечает термодинамическому рав1Новесию между электродом и раствором электролита. [c.148]

    В процессе электролиза при каждом новом повышении внешнего напряжения на ячейке величина обратной э. д. с., возникающей в итоге работы кислородно-водородного элемента, также будет возрастать, препятствуя электролизу. Действительно с ростом плотности тока количество насыщающих электроды газов увеличивается, но они не могут собраться в пузырек (ргаз < < 1 атм) и удалиться в атмосферу, а растворимость их в электролите ограничена. Если бы давление газов на электродах оставалось неизменным, то обратная э. д. с. образовавшегося газового элемента полностью воспрепятствовала бы прохождению тока извне. Однако вследствие частичного удаления газов с поверхности электродов из-за диффузии и растворения их в электролите через ячейку проходит весьма небольшой, остаточный ток, достаточный для того, чтобы выделенное им количество Нг-и Ог компенсировало потери газов. Только в случае, когда давление образующихся на электродах газов сравняется с атмосферным, дальнейший рост величины и станет невозможным, так как продукты электродных реакций — газы будут выделяться в атмосферу. Хотя обратная э. д. с. кислородно-водородного элемента достигает при этом предельной величины, работа газового элемента уже не может препятствовать протеканию электро. 1Иза вследствие достижения величины напряже- [c.238]


Смотреть страницы где упоминается термин Электродные реакции электроды, водородные: [c.599]    [c.490]    [c.281]    [c.130]    [c.128]    [c.266]    [c.71]    [c.190]   
Гетерогенный катализ (1969) -- [ c.380 ]




ПОИСК





Смотрите так же термины и статьи:

Водородный электрод

Реакции на электродах

Электродные реакции



© 2025 chem21.info Реклама на сайте