Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекула ориентационного взаимодействия

    Индукционное взаимодействие. Установлено, что раствори — тели, обладающие значительным дипольным моментом, способны индуцировать дипольный момент у молекул асимметричной и сла— боасимметричной структуры. Следовательно, индуцированию подвержены как полярные, так и некоторые неполярные углеводороды масляного сырья. Поляризации подвержены в большей степени полициклические ароматические углеводороды, у которых ароматические кольца слабо экранированы нафтеновыми циклами и короткими алкильными цепями (то есть голоядерные). Под влиянием элв стростатического поля растворителя в таких молекулах масляной фракции возникает дeфopмai ия внешнего электронного слоя, что приводит к неравномерному распределению зарядов на отдельных участках молекул. В результате неполярная молекула временно превращается в индуцированный диполь. Молекулы с индуцированным дипольным моментом подвергаются далее ориентационному взаимодействию и переходят и раствор полярного растворителя. Индукционные силы взаимодействия зависят от силы электростатического поля полярной молекулы, то есть от значения дипольного момента и химической природы неполярных молекул, а именно от способности их поляризоваться. Индуцированный дипольный момент пропорционален напряженности поля Е, то есть =аЕ, где а характеризует степень поляризуемости индуцированной молеку — лы. [c.215]


Рис. 61. Ориентационное взаимодействие (две возможные устойчивые ориентации полярных молекул) Рис. 61. <a href="/info/5990">Ориентационное взаимодействие</a> (две <a href="/info/1805754">возможные устойчивые</a> <a href="/info/18316">ориентации полярных</a> молекул)
    Склонность высокомолекулярных компонентов нефти к ассоциативным явлениям, т. е. возникновению связей между ними, как отмечалось выще, обусловлена характером взаимодействия составляющих их структурных звеньев, которое связано с наличием дисперсионных, индукционных и ориентационных сил. Соотношение сил составляющих энергий в первую очередь зависит от полярности высокомолекулярных соединений нефти. В системе слабополярных молекул (алканы, циклоалканы, алкано-циклоалканы) основными являются силы дисперсионного взаимодействия. С увеличением полярности, что характерно для поли-аренов, большое значение приобретает ориентационное взаимодействие. Увеличение склонности к ассоциации смол, кроме отмеченного вьиие фактора ароматичности, также зависит от содержания в них полярных функциональных групп и от суммарного содержания в смолах гетероатомов (сера, азот, кислород, металлы). [c.25]

    Ориентационное взаимодействие. В случае двух полярных веществ имеет место ориентационное взаимодействие постоянных диполей. В этом случае вокруг молекул образуется электрическое поле и они стремятся ориентироваться друг относительно друга. Это приводит к их притяжению, в результате чего одно вещество растворяется в другом. Ориентационное взаимодействие молекул двух полярных веществ тем сильнее, чем больше значения их дн-польных моментов. Эти силы взаимодействия являются функцией температуры чем выше температура, тем сильнее тепловое движение молекул и тем труднее им взаимно ориентироваться. Ориентационное взаимодействие обратно пропорционально г (расстоянию между диполями), следовательно, это взаимодействие короткодействующее. , [c.43]

    Эти три составляющие силы притяжения по-разному влияют на полную энергию притяжения. Наименьшее значение имеет индукционное взаимодействие. Ориентационное и дисперсионное взаимодействия зависят от природы молекул чем полярнее молекула, тем больше ориентационное взаимодействие (табл. 12). [c.40]


    С1ЧЛЫ межмолекулярного взаимодействия имеют электрическую природу. На сравнительно больших расстояниях между молекулами, когда их электронные оболочки не перекрываются, проявляется только действие сил притяжения. Еслп молекулы полярны, то сказывается электростатическое взаимодействие их друг с другом, называемое ориентиционным. Оно тем значительнее, чем больше дииольный момент молекул [х. Повыи1ение температуры ослабляет это взаимодействие, так как тепловое движение нарушает взаимную ориентацию молекул. Притяжение полярных молекул быстро уменьшается с расстоянием г между ними. Теории (В. Кеезом, 1912 г.) в простейшем случае для энергии ориентационного взаимодействия дает следующее соотношение  [c.136]

    Были составлены три смеси, первые две состояли из 70% нафтеновых углеводородов и 30% ароматических, различающихся по числу колец в молекуле, третья смесь содержала кроме углеводородов еще и смолы (рис. 8). На основании вычисленных значений коэффициента разделения установлено, что по мере роста цикличности молекул компонентов, добавляемых к нафтеновым углеводородам, избирательность растворения повышается. Данные экстракции масляной фракции 400—500°С фенолом и фурфуролом (табл. 1) показывают, что фенол эффективнее извлекает смолы. Растворение смол в полярных растворителях определяется ориентационным взаимодействием и способностью к образованию водородных связен с молекулами растворителя. При растворении в [c.59]

    Этот вид взаимодействия между молекулами (только полярными), приводящего к взаимному притяжению их, называется ориентационным взаимодействием. [c.87]

    Полярные молекулы при взаимодействии тоже могут подвергаться индуцированию и под влиянием их электростатических полей возникают дополнительные индуцированные диполи. Общее взаимодействие молекул в этом случае слагается из ориентационного и индуцированного эффектов. Например, постоянный диполь-иын момент у Н2О больше, чем у ЫНз, но молекула аммиака легче индуцируется, поэтому результирующий момент у нее выше, чем у молекулы воды, и комплексные аминосоединения [Me(NHз)J]"+ устойчивее, чем аквакомплексы (Ме(Н20)х] +. [c.9]

    Энергия индукционного взаимодействия, как и ориентационного, убывает пропорционально шестой степени расстояния, но индукционное взаимодействие не зависит от температуры, так как ориентация наведенного диполя не может быть произвольной, она определяется направлением постоянного диполя. Энергия / дд тем значительнее, чем выше поляризуемость неполярной молекулы и дипольный момент полярной молекулы. Индукционное взаимодействие наблюдается при образовании гидратов благородных газов, при растворении полярных веществ в неполярных жидкостях и существенно только для молекул со значительной поляризуемостью. К ним в первую очередь относятся молекулы с сопряженными связями. [c.133]

    Ориентационное и индукционное взаимодействия представляют собой электростатическую компоненту адсорбционных сил. Ориентационное взаимодействие играет основную роль для нейтральных молекул. В простейшем случае при достаточно больших температурах и значительном разрежении [c.39]

    Силы взаимодействия между полярными молекулами (ориентационный эффект). К полярным относятся вещества, молекулы которых имеют дипольный момент. У таких молекул на одном конце преобладает положительный заряд, на другом — отрицательный, в результате чего молекулы притягиваются друг к другу как разноименно заряженные тела. Полярными растворителями являются соединения, в молекуле которых содержатся электроотрицательные атомы кислорода, хлора, серы и др. (например, ке-тоны, хлорпроизводные и т. д.). Важная особенность ориентационного взаимодействия — зависимость его от температуры. Тепловое [c.69]

    Электростатическое взаимодействие молекул. Это взаимодействие молекул подразделяют на ориентационное, индукционное и дисперсионное. Наиболее универсально (т. е. проявляется в любых случаях) дисперсионное, так как оно обусловлено взаимодействием молекул друг с другом за счет их мгновенных микродиполей. При сближении молекул ориентация микродиполей перестает быть независимой и их появление и исчезновение в разных молекулах происходит в такт друг другу. Синхронное появление и исчезновение микродиполей разных молекул сопровождается их притяжением. При отсутствии синхронности в появлении и исчезновении микродиполей происходит отталкивание. [c.90]

    Ориентационное взаимодействие возникает между молекулами, обладающими постоянным дипольным моментом. Согласно теории взаимодействия полярных молекул, разработанной Дебаем, Б. В. Ильиным и другими исследователями, при сближении полярных молекул будет проявляться электростатическое взаимодействие между ними, называемое ориентационным эффектом. [c.75]

    Приведенные данные табл. 2 говорят о том, что дисперсионное взаимодействие играет основную роль для неполярных молекул. Для сильно полярных молекул основным является ориентационное взаимодействие. Доля индукционного взаимодействия незначительна. [c.78]


    Взаимодействие постоянных диполей, которые имеют большое значение в молекулах с большим дипольным моментом. Энергия взаимодействия двух диполей прямо пропорциональна произведению их дипольных моментов и обратно пропорциональна третьей степени расстояния между ними. Эта энергия ориентационного взаимодействия падает с повышением температуры. [c.157]

    Между полярными, неполярными молекулами и их сочетаниями возможны три типа взаимодействий ориентационное, индукционное и дисперсионное. Сущность ориентационного взаимодействия сводится к тому, что в дипольных молекулах происходит переориентация их относительно друг друга, так что положительный конец одного диполя ((il) притягивает к себе отрицательный конец другого (fis). Эта переориентация протекает до тех пор, пока она ие уравновесится силами отталкивания, возрастающими с уменьшением расстояния между центрами диполей. Так как тепловое движение нарушает ориентацию, то повышение температуры ослабляет силы связи ориентационного взаимодействия. Энергия ориентационного взаимодействия (Еор) определяется с учетом теплового движения из условия [c.8]

    Такой ориентации препятствует тепловое движение молекул, усиливающееся с повышением температуры. Поэтому ориентационное взаимодействие тем больше, чем больше дипольные моменты, меньше расстояние между молекулами и ниже температура. Энергия ориентационного взаимодействия приближенно может быть оценена по формуле В. Кеезома  [c.153]

    В результате обширного литературного обзора [37, 38, 39 и др.] достоверно установлено, что фазовые переходы во множестве конденсированных углеводородных систем происходят в результате ступенчатого структурирования по принципу иерархии. Низшие структурные элементы являются элементарными ячейками высших. В различных системах обнаружено от 3 до 5 иерархических ступеней. Низшие элементы имеют порядок 10..,20А, высшие достигают десятков микрон и более. Органические молекулы склонны к образованию кристаллов. Для них характерно отсутствие обменного взаимодействия. Наиболее вероятная природа сил межмолекулярного взаимодействия это радикальные взаимодействия, водородная связь, диполь-дипольное и ориентационное взаимодействие. [c.41]

    Электростатическое взаимодействие характерно для электрически заряженных частиц, в частности для полярных молекул. В последнем случае взаимодействие постоянных дипольных моментов называют ориентационным взаимодействием, при котором молекулы при сближении ориентируются наивыгоднейшим образом для обеспечения минимальной энергии системы. [c.94]

    Несмотря на аддитивность электростатических сил, ориентационное взаимодействие, как правило, неаддитивно вследствие наличия в большинстве случаев внешних факторов, нарушающих фиксированное положение молекул, например теплового воздействия, а также влияния соседних молекул при взаимной ориентации одной молекулы относительно другой. Наиболее ярко ориентационное взаимодействие проявляется для сильно полярных молекул. [c.94]

    Дисперсионное взаимодействие, как правило, вносит наиболее существенный вкл-ад в суммарную энергию взаимодействия в случае проявления дальнодействующих сил. При этом ориентационное взаимодействие значительно только в случае полярных молекул, а индукционное взаимодействие обычно проявляется наиболее слабо. [c.95]

    Таким образом, молекулы полярных присадок вызывают изменения в первоначальной кристаллической структуре парафинов, причем степень такого изменения, очевидно, определяется силой слабых межмолекулярных взаимодействий молекул присадок с углеводородами различной молекулярной массы и природы. Парафиновые углеводороды являются неполярными соединениями, в которых межмолекулярные взаимодействия осуществляются за счет дисперсионных сил. В полярных веществах наряду с дисперсионным взаимодействием существует ориентационное и индукционное взаимодействия, энергия которых может быть значительно выше энергии дисперсионного взаимодействия. В неполярных веществах индукционное и ориентационное взаимодействия незначительны. Дисперсионные силы на единицу площади поверхности не зависят от природы вещества [158], поэтому, вычитая силовое поле, обусловленное действием дисперсионных сил, из силового поля полярных групп, можно получить значение силового поля, обусловленного действием ориентационных и индукционных сил. В общем случае изменение энергии межмолекулярного взаимодействия при смешении углеводородов с ПАВ определяется по уравнению [c.159]

    Соотношение энергий дисперсионного и ориентационного взаимодействия зависит от числа валентных электронов и величины дипольного момента молекул растворяющихся и растворяющих веществ. [c.17]

    Ориентационное (диполь-дипольное) взаимодействие проявляется между полярными молекулами. В результате беспорядочного теплового движения молекул при их сближении друг с другом одноименно заряженные концы диполей взаимно отталкиваются, а противоположно заряженные притягиваются. Чем более полярны молекулы, тем сильнее они притягиваются и тем самым больше ориентационное взаимодействие. Нагревание усиливает тепловое движение молекул и тем самым уменьшает возможность ориентации, поэтому чем выше температура, тем слабее ориентационное взаимодействие. [c.105]

    Ориентационное взаимодействие вносит, как правило, очень незначительный вклад в общую энергию взаимодействия молекул полярных растворителей с углеводородами, в связи с тем, что дипольные моменты молекул углеводородов равны или близки к нулю. [c.10]

    При депарафинизации применяются неполярные растворители— пропан и узкая бензиновая фракция (нафта), а также полярные растворители — ацетон, метилэтилкетон, дихлорэтан. Неполярные растворители полностью растворяют жидкую часть масла, а полярными растворителями она растворяется слабо. Твердые углеводороды также гораздо лучше рг створяются неполярными растворителями. Чтобы повысить растворяющую способность полярных растворителей, к ним добавляют органические неполярные углеводороды такие полярные растворители, как ацетон, метилэтилкетон, дихлорэтан, используются тoJ[ькo в смеси с бензолом и толуолом или только в смесн с толуолом. Механизм действия бензола и толуола на растворяющую спосоСность полярных растворителей до конца не изучен. Вероятно, молекулы ароматического растворителя под действием полярной группы основного растворителя приобретают некоторый индукционный дипольный момент, происходит ориентационное взаимодействие их с молекулами полярного растворителя, которое ведет к усилении) дипольного момента системы. Одновременно в присутствии бензольного ядра усиливается дисперсионное взаимодействие. [c.327]

    Ориентационное (диполь-дипольное) взаимодействие проявляется между полярными молекулами. В результате беспорядочного теплового движения молекул при их сближении друг с другом й1 ноименно заряженные концы диполей взаимно отталкиваются, а противоположно заряженные притягиваются. Чем более полярны молекулы, тем сильнее они притягиваются и тем самым больше ориентационное взаимодействие. [c.90]

    Изучение природы межмолекулярных сил, способствующих ассоциированию асфальтенов, является предметом многочисленных исследований. Обобщая имеющиеся сведения, можно объяснить стабилизацию надмолекупя1 юй структуры асфальтенов, учитьшая все виды взаимодействия, вносящие определенный вклад в суммарную энергию а) дисперсионное, которое выражается в виде обмена электронами между однотипными неполярными фрагментами и действует на очень близких расстояниях (0,3—0,4 нм) б) ориентационное, которое проявляется в виде переноса зарядов между фрагментами, содержащими диполи или гетероатомы, также относится к близкодействующим силам в) тг-взаимодействие ареновых фрагментов, формирующих блочную структуру г) радикальное взаимодействие между неспаренными электронами парамагнитных молекул д) взаимодействие за счет водородных связей между гетероатомами и водородом соседних атомов составляющих молекул е) взаимодействие функциональных групп, связанных водородными связями. [c.25]

    Очевидно, что характер связей молекул компонентов, входящих в такие соединения, в разных случаях различен. Так. в комплексе тринитробензол—нафтиламин [СвНз(М02)з СюН,ЫН21 диполь группы N 2 индуцирует диполь в ароматическом ядре амина и оба диполя притягиваются (индукционное взаимодействие). В той же системе, по-видимому, имеется и ориентационное взаимодействие постоянных диполей нитро- и аминогруппы [СвНз(М02)я-ЫНа СюН,]. Прочность соединений таких типов, естественно, различна. [c.164]

    Растворимость всех комшонеитов масляных фракций в полярных растворителях уменьшается с понижением темтературы. Так, растворимость углеводородов и смол в полярных растворителях в широком интервале темшератур показана [6] на примере разных групп кампонентов, выделенных из концентрата сураханской отборной нефти (рис. 7). Парафиновые углеводороды масел при низких температурах и соответствующей кратности растворителя почти, полностью выделяются из раствора. Их растворимость в полярных растворителях так же как и части циклических углеводородов с длинными боковыми цепями является результатом действия дисперсионных сил. Растворимость остальных циклических углеводородов и смол определяется индукционным, а смол— ориентационным взаимодействием. Действие полярных сил в этом случае настолько велико, что даже пр,и низких температурах вследствие аосоциации молекул растворителя не происходит вы- [c.50]

    Как показывают квантовомеханические расчеты, энергия ван-дер-ваальсова взаимодействия слагается из электростатической, индукционной и дисперсионной энергий. В электростатическом взаимодействии наиболее важным является так называемое ориентационное взаимодействие полярных молекул. [c.132]

    Ориентационное взаимодействие (эффект Кьезома). Рассмотрим взаимодействие двух полярных молекул с одинаковыми дипольными моментами. При сближении они ориентируются так, чтобы энергия системы стала минимальной. На рис. 61, а показано расположение диполей в хвост . Пусть расстояние между центрами диполей з намного больше длины диполя I. Заряд полюса диполя обозначим через е. Энергию ориентационного взаимодействия можно представить как сумму кулоновского притяжения и отталкивания зарядов полюсов диполей  [c.132]

    Таким образом, ориентационное взаггмоденствие проявляется только у молекул, обладающих собственным электрическим моментом диполя. Молекулы ориентируются относительно друг друга так, что сближаются разноименными электрическими полюсами. Значение ориентационного взаимодействия тем больше, чем боль- [c.63]

    Ориентационное взаимодействие обусловливается наличием двух полярных молекул, причем с увеличением температуры энергия этого взаимодействия снижается. Взаимодействие двух молекул, одна из которых является постоянным диполем, а в другой диполь наводится первой, называется индукционным величина энергии индукционного взаимодействия не зависит от температуры. Дисперсионное взаимодействие наблюдается как между полярными, так и неполярными молекулами оно лызвано взаимным возмущением электронных орбиталей, в результате чего образуются два мгновенных диполя. Соотношение всех перечисленных видов взаимодействий зависит от степени полярности компонентов НДС. В системе слабополярных молекул основными являются силы дисперсионного взаимодействия, а с увеличением полярности возрастают силы ориентационного взаимодействия. [c.16]

    Последний член уравнения 1)—— характеризует ван-дер-ваальсовскос притяжение молекул, являющееся результатом действия ориентационных, индукционных и дисперсионных сил. Константа межмолекулярного притяжения Кб в общем случае включает три составляющие, описывающие соответственно взаимодействие двух постоянных диполей (ориентационное взаимодействие), диполя с неполярной молекулой (индукционное взаимодействие) и взаимодействие двух неполярных молекул [c.17]

    Растворимость углеводородов в полярных растворителях зависит от способности их молекул поляризоваться, что связано со структурными особенностями молеку л углеводородов. Вследствие малой поляризуемости молекул твердых углеводородов индуцированные дипольные моменты этих соединений евелики, поэтому растворение твердых углеводородов в полярных растворителях происходит в основном под действи м дисперсионных сил. Растворимость остальных компонентов масляных фракций является результатом индукционного и ориентационного взаимодействий, причем действие полярных сил настолько велико, что даже при низких температурах эти компоненты остаются в растворенном состоянии. При понижении температуры влияние дисперсионных сил постепенно ослабевает, в то время как влияние полярных сил усиливается в результате при достаточно низких температурах твердые углеводороды выделяются из раствора и благодаря наличию длинных парафиновых цепей сближаются с образованием кристаллов. [c.156]

    В отличие от ориентационного взаимодействия, проявляющегося между полярными молекулами, диспе рсионное взаимодействие характерно для любых молекул, как полярных, так и неполярных. Дисперсионные силы обусловлены коррекцией движений электронов, их взаимным отталкиванием и возникающими вследствие этого виртуальными, или мгновенными диполями. [c.10]


Смотреть страницы где упоминается термин Молекула ориентационного взаимодействия: [c.30]    [c.215]    [c.60]    [c.138]    [c.63]    [c.75]    [c.70]    [c.81]   
Краткий курс физической химии Издание 3 (1963) -- [ c.85 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие ориентационное

Молекула взаимодействие



© 2025 chem21.info Реклама на сайте