Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инфракрасное испускание

    Время жизни при испускании инфракрасного света составляет 10" сек. [c.342]

    На рис. 13-32 показана обобщенная диаграмма энергетических уровней произвольной молекулы. На ней изображены два электронных уровня, Еу и 2, а также относящиеся к ним колебательные и вращательные уровни. Обычно расстояния между электронными энергетическими уровнями намного превышают расстояние между колебательными уровнями, которые в свою очередь намного больше расстояний между вращательными уровнями. Электронные переходы молекулы (т. е. переходы с одного электронного уровня на другой) соответствуют поглощению или испусканию электромагнитного излучения в видимой и ультрафиолетовой частях спектра колебательные переходы соответствуют поглощению или испусканию излучения в ближней инфракрасной и инфракрасной областях спектра, вращательные переходы отвечают поглощению или испусканию излучения в дальней инфракрасной и более длинноволновых, вплоть до микроволновой, областях электромагнитного спектра. [c.585]


    Для расшифровки состава природных органических соединений нефти и нефтепродуктов и характеристики их свойств применяются оптические методы. Сюда относятся инфракрасная и ультрафиолетовая спектрометрия, метод комбинационного рассеяния света, определения показателя преломления и оптической активности. Вещество, через которое проходит излучение, поглощает лучи только определенной длины волны (частоты), и по закону Кирхгофа само вещество излучает только те лучи, которые оно в данных условиях поглощает. Каждый ион, атом, молекула дают характерные частоты в спектре поглощения, спектре испускания и спектре комбинационного рассеяния. Задачей спектрального анализа является определение этих характеристических частот, зная которые, можно определить качественный состав углеводородной смеси. Для этого существуют таблицы характеристических частот индивидуальных углеводородов. Для количественного анализа еще необходима оценка интенсивности излучения. [c.228]

    Дальнейшее поведение возбужденной частицы не зависит от механизма ее образования. Возможно физическое или химическое тушение свечения, перенос энергии на другие частицы или внутримолекулярная безызлучательная дезактивация. Если время жизни возбужденной частицы мало по сравнению со временем релаксации, возможна дезактивация с испусканием кванта (рис. 42), т. е. хемилюминесценция. В зависимости от механизма образования и природы возбуждаемой частицы хемилюминесценция может являться флуоресценцией или фосфоресценцией. Как видно из рис. 42, энергия кванта хемилюминесценции равна /IV а + С, где а — энергия активации Q — теплота, выделяющаяся в элементарном акте. Следовательно, хемилюминесценция должна наблюдаться в соответствующем интервале длин волн. В некоторых реакциях в газовой фазе наблюдается инфракрасная хемилюминесценция, соответствующая колебательному возбуждению молекул. В реакциях, протекающих в жидкой фазе, энергия колебательного возбуждения рассеивается очень быстро. Наблюдающаяся хемилюминесценция соответствует обычно излучению с пулевого колебательного уровня возбужденного электронного состояния и лежит в видимой и реже в ультрафиолетовой областях. [c.119]

    Молекулярная оптическая спектроскопия — это раздел физики и физической химии, в котором изучаются молекулярные спектры поглощения, испускания и отражения электромагнитных волн в диапазоне волновых чисел от 10 до 10 см . Она включает инфракрасную спектроскопию, спектроскопию в видимой области и УФ-спектроскопию. [c.242]


    В-третьих, как уже упоминалось, взаимодействие вещества с инфракрасным излучением, сопровождающееся поглощением излучения, а также испускание радиации в этой области спектра возможно для молекул, у которых вращение и колебание сопровождаются изменением электрического момента (дипольный момент). У молекул, состоящих из одинаковых атомов (Оа, N5, Нг. ..), дипольный момент равен нулю и не появляется ни при колебаниях, ни при вращении, поэтому для таких веществ отсутствует испускание или поглощение в инфракрасной области. Однако изменения колебательных и вращательных состояний могут сопровождаться электронными переходами, а также проявляются при рассеянии света. [c.252]

    Изменение энергии поступательного движения молекулы не ведет к поглощению или испусканию излучения, проявляющегося Б ультрафиолетовой, видимой или инфракрасной частях спектра. Поэтому этот тип движения молекулы нами не рассматривается. [c.308]

    Квант поглощаемой (или испускаемой) лучистой энергии определяется, вообще говоря, изменением этих видов энергии. Изменение только вращательной энергии (при постоянной колебательной и электронной) имеет место в так называемом вращательном или ротационном спектре молекул. Вследствие того, что величина кванта вращения мала, вращательные спектры лежат в инфракрасной части спектра. Так как испускание или поглощение света возможно лишь в случае периодического изменения дипольного момента, то вращательные спектры имеют лишь полярные молекулы. [c.524]

    Поглощение и испускание света связаны с изменением энергетического состояния вещества. Изменение энергии поступательного или свободного вращательного движения молекул не приводит к поглощению или испусканию излучения и при изучении химической формы движения материи не рассматривается. Колебательные и вращательные движения групп атомов в молекулах обычно связаны с инфракрасной (Х>7,610- м) или ультрафиолетовой (Х<4,010- м) областями спектра. [c.344]

    Известны инфракрасные спектры испускания, отражения и поглощения. Однако наибольшее распространение в ИК-спектроскопии получил абсорбционный метод, т. е. метод, с помощью которого в результате взаимодействия вещества с электромагнитным излучением получают спектры поглош,ения. Преимущество этого метода состоит в том, что спектр поглощения можно получить, располагая лишь небольшим количеством вещества (доли см ) в любом агрегатном состоянии, в растворе, при разных температуре и давлении, вещества, окрашенного и непрозрачного в видимом свете, люминесцирующего и т. п. [c.185]

    Термин фотохимия используется достаточно широко. Хотя фотохимия в основном рассматривает химические превращения при поглощении света, ряд физических процессов, не включающих каких-либо суммарных химических изменений, также относятся к области фотохимии например, такие процессы, как флуоресценция (когда свет испускается образцом, поглотившим излучение) или хемилюминесценция (когда продуктом химической реакции является излучение света), должны рассматриваться как фотохимические. Слово свет также используется достаточно произвольно, поскольку в процессах, идентифицируемых как фотохимические, участвует излучение гораздо более широкого диапазона длин волн, чем видимая область. Длинноволновый предел, видимо, располагается в ближней инфракрасной области (около 2000 нм), а рассматриваемый диапазон простирается далеко в вакуумный ультрафиолет (см. примечание на с. 179) и лишь формально ограничивается длинами волн, при которых излучение становится заметно проникающим (рентгеновское излучение). Важным вопросом фотохимии является механизм участия возбужденных состояний атомов и молекул в изучаемых процессах. Очевидно, что изучение процессов поглощения или испускания света является делом спектроскописта в той же мере, что и фотохимика, и последний должен иметь по крайней мере общие знания в области спектроскопии. В то же время фотохимику [c.11]

    К теплофизическим свойствам относят также некоторые оптические свойства, связанные с поглощением н испусканием теплового излучения (коэффициенты излучения, поглощения и пропускания). Различают два типа коэффициентов — интегральные и спектральные. Первые характеризуют оптические свойства физических тел в широкой области спектра излучения — от инфракрасной до ультрафиолетовой, вторые — на заданной частоте излучения. [c.433]

    Явление катодолюминесценции — это испускание электромагнитного излучения в ультрафиолетовой, видимой или инфракрасной области под действием электронной бомбардиров- [c.133]

    В основе всех спектроскопических методов лежит измерение зависимости интенсивности поглощения, испускания или рассеяния света веществом от частоты света (или длины волны). В оптической спектроскопии используются спектры поглощения в инфракрасной, видимой или ультрафиолетовой областях в, интервале длин волн от 10 1 до 10 см , а также спектры комбинационного рассеяния света и спектры люминесценции (менее важный и общий метод спектров люминесценции здесь не рассматривается). На рис. 70 приведена классификация спектров в зависимости от длины волны (или частоты). Разделение оптического спектра на эти участки связано с возможностями приборов, а также с природой поглощения света в разных областях. Для химиков-органиков наибольшее [c.607]


    Тепловое излучение — передача теплоты путем испускания коротких электромагнитных волн. Тепловые излучения охватывают диапазон электромагнитных колебаний примерно от 3-10" до 4-10 Гц, что соответствует длинам волн 1 мм — 0,75 мкм. Нижняя граница по частоте определяется близостью к радиоволновым процессам (дальнее инфракрасное излучение), а верхняя — к видимому излучению (красный свет). Если теплопроводность и конвекция возможны только в среде из какого-то вещества, то тепловое излучение может распространяться и в вакууме, а скорость движения его равна скорости света. [c.162]

    Преимущество этого метода заключается в том, что само анализируемое вещество, через которое пропускают инфракрасные лу ш, не подвергается каким-либо изменениям, как при получении спектров испускания. [c.287]

    Лучистый теплообмен. Теплообмен излучением представляет собой процесс передачи тепла от одного тела к другому путем испускания электромагнитных волн. Все тела излучают и передают лучистую энергию без участия передающей среды. Тепловое излучение несет тепловую энергию главным образом в видимой и инфракрасной части электромагнитного спектра. [c.13]

    ХЛ==Гф . Если удовлетворяются правила отбора для перехода Е, соответствующего некоторой колебательной частоте, то говорят, что эта частота активна в инфракрасной области спектра, так как она будет присутствовать в спектрах испускания и поглощения электромагнитных волн соответствующей частоты, Такие колебания всегда сопровождаются изменением дипольного момента молекулы. [c.664]

    Колебательные спектры молекул в чистом виде практически не встречаются, так как колебания ядер молекулы обычно сопровождаются ее вращением. Наложение малых вращательных возбуждений на колебательные движения приводит к линейчато-полосатой структуре инфракрасных спектров поглощения и испускания. [c.664]

    Поглощение или испускание инфракрасных лучей. Колебания молекул [c.161]

    В дальнейшем для уточнения значений молекулярных постоянных HF в состоянии были проведены исследования спектра испускания HF в пламени Нг п- Рг [723, 2755], спектра поглощения HF в далекой и ближней инфракрасной областях [3775, 2499] и ультрафиолетового спектра HF [2258]. [c.294]

    Джонс и Барроу [2258] использовали также данные неопубликованного исследования инфракрасного спектра испускания НР, выполненного Манном с сотрудниками, о которых сообщалось в заметке [2755]. [c.294]

    Распад N20 изучали при температурах от 1500 до 2500° К и давлениях до 300 атм по инфракрасному испусканию N2 и ультрафиолетовому спектру поглощения N30 и N0. Концентрацию N30 в аргоне изменяли от 0,02 до 2%. Во всем изученном интервале распад N20 протекает по закону первого порядка по отношению к N30. При более высоких концентрациях N 0 необходимо вводить поправки на выделяющееся в реакции тепло. При всех концентрациях N30, исключая очень низкие, за реакциехг [c.159]

    В данном обзоре рассматриваются только колебания молекул. Кроме того, имеются вращательные энергетические уроври, которые также дают инфракрасное поглощение, или испускание, или частоты рассеяния в сп ктре комбинационного рассеяния. Они имеют меньшую энергию (т. е. меньшую частоту), чем колебательные уровни. Однако этя частоты часто накладываются на колебательный спектр, образуя крылья пэ обе стороны от чисто колебательной линии. Это наблюдается для образцов, находящихся в газообразном состоянии. В жидком состоянии вследствие межмолекулярного взаимодействия вращательная структура сбычно не наблюдается. [c.316]

    При более внимательном рассмотрении спектра испускания водорода, изображенного на рис. 8-8, можно различить в нем три отдельные группы линий. Эти три группы, или серии, линий пoлyчиJШ каждая свое особое название по имени открывших их ученых. Серия, начинающаяся при 82259 см и продолжающаяся до 109678 см располагается в ультрафиолетовой части спектра и носит название серии Лаймана. Серия, начинающаяся при 15 233 см и продолжающаяся до 27 420 см занимает большую часть видимой области и небольшую часть ультрафиолетовой области спектра и называется серией Бальмера. Линии, расположенные между 5332 и 12 186 см в инфракрасной области спектра, составляют серию Пашена. На рис. 8-9 показаны бальмеровские серии спектра атомарного водорода, полученные от некоторых звезд. [c.340]

    Радиоволны, инфракрасный, видимый и ультрафиолетовый свет, рентгеновские лучи и гамма-излучение представляют собой электромагнитные волны с различной длиной волны. Скорость света, с = 2,9979-10 ° см с , связана с его длиной волны X и частотой V соотношением с = Ху. Волновое число у-это величина, обратная длине волны, V = 1/Х. Все нагретые тела излучают энергию (излучатель с идеальными свойствами дает излучение абсолютно черного тела). Планк выдвинул предположение, что энергия электромагнитного излучения квантована. Энергия кванта электромагнитного излучения пропорциональна его частоте, Е = км, где / -постоянная Планка, равная 6,6262 10 Дж с. Выбивание электронов с поверхности металла под действием света называется фотоэлектрическим эффектом. Квант света называется фотоном. Энергия фотона равна /IV, где V-частота электромагнитной волны. Зависимость поглошения света атомом или молекулой от длины волны, частоты или волнового числа представляет собой спектр поглощения. Соответствуюшая зависимость испускания света атомом или молекулой является спектром испускания. Спектр испускания атомарного водорода состоит из нескольких серий линий. Положения всех этих линий точно определяются одним общим соотношением-уравнением Ридберга [c.375]

    Возможна и такая ситуация, в которой поглощается фото 1 с частотой, более высокой, чем наивысщая частота, соответствукщая разности энергетических уровней атома. В этом случае электрон покинет атом и превратится в свободный электрон, а атом станет ионизированным. Обратный процесс рекомбинации катиона с электроном может привести к испусканию фотона с высокой частотой, Такой вид излучения имеет непрерывный спектр частот. Низкочастотные (инфракрасные) фотоны могут также испускаться или поглощаться колебаниями или вращениями диполь-ных молекул, которые со.здают таким образом полосы испускания или поглощения. [c.192]

    Аналогичный эффект известен для газокалильной сетки Ауэра при свечении газа. Эта смесь окислов тория и церия имеет очень маленькую излучательную способность в инфракрасной области, но огромную в видимом диапазоне. Таким образом, при заданном притоке теплоты она теряет мало энергии на инфракрасное излучение и поэтому достигается высокая температура с испусканием мощного излучения в видимом диапазоне. Присутствие в светлых окислах типа А12О3 даже в небольших количествах темного окисла РегОз существенно увеличивает излучательную (поглощательную) способность. [c.195]

    Электронным переходам соответствуют линии, лежащие в ультрафиолетовой и видимой областях спектра, а излучению, вызванному колебательными и вращательными переходами, — линии инфракрасной области (рис. 31). Электронные переходы часто сопровождаются одновременным изменением колебательных уровней. В результате спектры испускания молекулы не представляют собой совокупности отдельных линий, отвечающих электронным переходам, а обнаруживают более сложную структуру и имеют вид полос. Практически удобно изучать электронные спектры поглощения, используя жидкости или растворяя исследуемое вещество в малополярном растворителе. При этом электронный спектр не осложняется вращательно-колебательными переходами и лучше поддается интерпретации. Если свет с интенсивностью I проходит в веществе путь дЛиной х, причем концентрация поглощенного вещества равна С, то доля поглощенного света dill равна [c.63]

    Вращательные спектры. Излучение в дальней инфракрасной и микроволновой областях дает вращательные спектры молекул в чистом виде. Эти спектры, как правило, спектры поглощения, а не испускания. Чисто вращательные спектры могут давать лишь молекулы с постоянным электрическим моментом диполя. Бездипольные молекулы типа На, Ог, N2 и другие не способны поглощать или испускать свет при изменении состояния вращения, т. е. они не дают ИК-спектров вращения. Это в какой-то мере ограничивает практическое использование ИК-спектров вращения. [c.175]

    Оптическими называют те методы физико-химического анализа, в основе которых лежит явление испускания или поглощения инфракрасных, видимых, ультрафиолетовых, рентгеновских лучей анализируемыми веществами или продуктами их реакций. Сюда относятся колориметрия, нефелометрия, флуорометрия, спектрофотометрия, по-ляриметрия, рефрактометрия и др. [c.6]

    Свечение нагретых до высокой температуры тел называется испусканием накаленных тел. Это равновесное излучение. Все другие типы испускания света называются люминесценцией и представляют собой неравновесное излучение. При люминесценции система излучает энергию, и для возбуждения излучения нужно подводить энергию извне. Разновидности люминесценции отличаются друг от друга по типу источника энергии возбуждения. Различают электролюминесценцию, возбуждаемую электрическим током, проходящим через ионизированный газ или полупроводник радио-люминесценцию, возникающую под действием частиц высоких энергий хемилюминесценцию, возникшую в результате химических реакций триболюмипесценцию, наблюдаемую при разрушении некоторых кристаллов сонолюминесценцию, возникающую при воздействии интенсивных звуковых волн на жидкость. Фотолюминесценция— это люминесценция, возникающая при поглощении инфракрасного, видимого или ультрафиолетового света. [c.116]

    СПЕКТРАЛЬНЫЙ АНАЛИЗ, метод качеств, и количеств, определения состава в-в, основанный на исследовании их спектров испускания, поглощения, отражения и люминесценции. Различают атомный и молекулярный С. а., задачи к-рых состоят в определении соота. элементного и молекулярного состава в-ва. Эмиссионбый С. а. проводят по спектрам испускания атомов, ионои или молекул, возбужденных разл. способами, абсорбционный С. а.-по спектрам поглощения электромагн. излучения аиализнруем1>1ми объектами (см. Абсорбционная спектроскопия). В зависимости от цели исследования, св-в анализируемо о в-ва, специфики используемых спектров, области длин волн и др. факторов ход анализа, аппаратура, способы измерения спектров и метрологич. характеристики результатов сильно различаются. В соответствии с этим С. а. подразделяют на ряд самостоят. методов (см., в частности, Ато.мно-абсорбционный анализ. Атомно-флуоресцентный анализ, Инфракрасная спектроскопия, Комбинационного рассеяния спектроскопия, Люминесцентный анализ. Молекулярная оптическая спектроскопия. Спектроскопия отражения, Спектрофотометрия, Ультрафиолетовая спектроскопия, Фотометрический анализ, Фурье-спектроскопия, Рентгеновская спектроскопия). [c.392]

    Когда Vaл и Vкuлeб равны нулю, каждая линия отвечает нереходу между состояниями молекулы при заданном значении электронного и колебательного квантовых чисел. В этом случае говорят, что линии в сисктре поглощения или испускания образуют чисто вращательную ветвь. Поскольку они отвечают переходам между уровнями энергии, лежащими очень близко друг к другу, эти линии обнаруживаются в далекой инфракрасной области спектра. [c.364]

    Имеется полная свобода выбора применяемого монохроматического света, так как молекулы среды способны рассеивать свет почти любой длины волны. В этом отношении спектр комбинационного рассеяния более удобен для экспериментальной работы, чем инфракрасный спектр поглощения, ограниченный отдельными областями спектра, для которых поглощающие молекулы оптически активны. Спектры комбинационного рассеяния и инфракрасные спектры позволяют получать взаимно дополняющие данные, так как линии, отсутствующие в одном спектре, часто встречаются в другом. Три факта упрощают интерпретацию спектров комбинационного рассеяния 1) смещение линий спектра комбинационного рассеяния, т. е. разность волновых чисел падающего и рассеянного света, не зависит от частоты падающего света, 2) смещение линий спектра комбинационного рассеяния в первом приближении не зависит от состояния рассеивающей среды и 3) согласно уравнениям (33) и (34), квант равен разности энергий двух стационарных состояний рассеиваюш,ей молекулы, относительно которых имеются точные данные на основании спектров поглощения и испускания  [c.430]

    Установление колебательных правил отбора осуществляется обычным способом. Произведение представлений исходного и конечного состояний должно содержать в своем разложении представление оператора перехода. В случае колебаний исходным состоянием является основное состояние, обладающее симметрией гамильтониана для основного состояния. Оно должно быгь полносимметричным. Вывод правила отбора основывается на том, что разрешенный колебательный переход должен происходить в возбужденное колебательное состояние, которое обладает трансформационными свойствами какой-либо компоненты оператора перехода. Для обычного поглощения или испускания излучения (инфракрасная спектроскопия) речь идет о компонентах дипольного оператора. В группе С20 компоненты дипольного оператора преобразуются по представлениям Ль В1 или В2. Все эти типы симметрии колебаний молекулы воды отвечают разрешенным в инфракрасном спектре переходам. В спектроскопии комбинационного рассеяния оператором перехода является оператор поляризуемости, который преобразуется как квадрат дипольного оператора. Его компоненгы зависят от декартовых координат как х , г/ г , ху, хг и уг. Представления, по которым преобразуются эти компоненты, обычно тоже указываются в таблицах характеров. Для группы С20 имеются компоненты поляризуемости, которые преобразуются по каждому из ее пред-сгавлений. Следовательно, любой тип колебаний молекулы с [c.335]

    J I. Электронные спектры молекулы J 1 исследовались как в испускании, так и в поглощении в широкой области длин волн — от ближней инфракрасной до вакуумного ультрафиолета (см. [996, 1236, 1178, 1179, 1950, 1952, 2152а, 2153, 1261, 4096]). В этих спектрах наблюдались переходы между восемью электронными состояниями J 1. Так же как [c.282]


Смотреть страницы где упоминается термин Инфракрасное испускание: [c.470]    [c.69]    [c.41]    [c.144]    [c.174]    [c.114]    [c.71]    [c.173]    [c.617]    [c.280]    [c.414]   
Молекулярная фотохимия (1967) -- [ c.81 ]




ПОИСК







© 2024 chem21.info Реклама на сайте