Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление бутанов метана

    Каталитическое окисление в жидкой фазе имеет то преимущество перед газофазным процессом, что позволяет более точно регулировать состав конечных продуктов [60]. Та1 , при окислепии н-бутана в жидкой фазе образуется в первую очередь уксусная кислота при полном отсутствии формальдегида. При окислепии же пропана в газовой фазе, напротив, образуются главным образом пропионовый альдегид, пропиловый спирт, ацетон, уксусный альдегид, уксусная кислота, формальдегид, метиловый спирт, окись пропилена, окись этилена. При окислении н-гексана теоретически можно получить около 60 различных продуктов окисления, не считая вторичных продуктов, образующихся за счет дальнейших реакций кислородсодержащих компонентов. Метан и этан не только содержатся в значительно больших количествах в природном газе, чем пропан или бутан, но они представляют интерес и для применения в качестве исходного сырья, так как нри окислении дают продукты более простого состава. Именно сложный состав продуктов газофазного окисления был причиной того, что внедрение этого процесса в промышленную практику сильно задержалось. [c.151]


    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]

    Окисление легких алканов. В промышленности окисляют главным образом метан, пропан и бутан. С корость окисления возрастает от метана к бутану. Трудность регулирования процесса связана с тем, что продукты окисления (спирты, альдегиды и кетоны) окисляются легче, чем исходное сырье. [c.273]

    Как правило, метан и его гомологи реагируют с кислородом в газовой фазе при температуре от 250° и выше, образуя наиболее устойчивые из всех возможных продуктов окисления, а именно спирты, альдегиды или кетоны, кислоты и окиси. В случае высших углеводородов всегда происходит разрыв углеродной цепи, и часто кислородсодержащие соединения с тем же числом атомов углерода, что и исходный углеводород, составляют небольшую долю общего количества полезных продуктов окисления. Из всех углеводородов наиболее трудно окисляется метан. При последовательном переходе от метана к бутану легкость окисления увеличивается. Давление благоприятствует увеличению выхода и несколько ограничивает степень окисления. Перед началом реакции обычно наблюдается индукционный период. Твердые катализаторы и присутствие водяного пара не оказывают большого влияния на течение процесса. В этом отношении следует отметить аналогию с парофазным нитрованием (гл. 6), причем важно подчеркнуть, что нитрование азотной кислотой всегда сопровождается окислением, протекающим в значительной степени. [c.69]


    Окисление пропана и бутана имеет и другие преимущества но сравнению с окислением метана и этана. Во-первых, пропан и бутан окисляются при более низких температурах. Во-вторых, пропан и бутан легче отделяются от других газообразных продуктов окисления, чем метан и этан, что исключительно важно, так как обычно окисление проводят при избытке углеводорода, который необходимо возвращать в процесс. В-третьих, при получении чистых исходных газов пропан и бутан легче отделять от метана и этана, а также друг от друга, чем метан от этана. [c.306]

    Относительная реакционная способность типичных водородных атомов понижается от третичных к вторичным и первичным. При 300° скорости их окисления относятся как 10 2 1. Поэтому изобутан окисляется очень легко. Метан и этан, содержащие только первичные водородные атомы, чрезвычайно устойчивы к окислению. Пронан и бутан, имеющие первичные и вторичные водородные атомы, занимают среднее положение. В настоящее время еще не известен промышленный способ окисления метана в метиловый спирт пли формальдегид. [c.150]

    Наиболее трудно из газообразных парафиновых углеводородов окисляется метан. При переходе от метана к бутану скорость окисления возрастает. Метан и его гомологи реагируют с кислородом в газовой фазе при температуре выше 250°С. Теоретически из метана можно получить метанол, формальдегид и муравьиную кислоту (не считая окислов углерода)  [c.171]

    Из газообразных парафиновых углеводородов наиболее трудно окисляется метан, а при переходе от метана к бутану скорость окисления возрастает. Метан (как и его гомологи) реагирует с кислородом в газовой фазе при температуре выше 250 °С. Теоретически из метана можно получить метиловый спирт, формальдегид и муравьиную кислоту  [c.110]

    Широко исследовано применение для окисления алканов окислителей на основе переходных металлов. Обзоры по механизмам реакции с использованием в качестве окислителей марганца(VII), хрома(VI), ванадия (V), кобальта(III), марганца (III), церия (IV) и свинца (IV) опубликованы Стюартом [138] и Вибергом [139]. Окисление насыщенных углеводородов неорганическими окислителями идет в довольно жестких условиях поскольку первоначальные продукты реакции обычно более склонны к окислению, чем сами алканы, образуются значительные количества продуктов вторичного окисления. Трудно, например, окислить метиленовую группу во вторичную спиртовую группу без дальнейшего окисления в кетонную группировку в некоторых случаях условия окисления настолько жесткие, что происходит расщепление С—С-связи. Обычно удается превратить С—Н-группы в третичные спиртовые группы, однако поскольку многие третичные спирты легко дегидратируются, то, их, как правило, нельзя получить с хорошим выходом. Виберг и Фостер нашли, что окисление 3-метилгептана дихромат-ионом дает З-метилгептанол-3 с выходом 10% [140]. Низшие алканы ( i — С4) окисляются до спиртов кислородом в ацетонитриле при комнатной температуре в присутствии хлорида олова(II) при этом метан значительно менее реакционноспособен, чем этан, пропан и бутан. Использование солей Со(1П) для каталитического окисления бутана в уксусную кислоту представляет промышленный интерес. Окисление н-пентана также дает уксусную кислоту в качестве главного продукта в состав минорных продуктов входят пропановая, бутановая и пентановая кислоты. [c.155]

    Порядок устойчивости к окислению в газовой фазе согласуется с порядком стабильности метан, этан, изобутан, нормальный бутан, нормальный пентан, изопентан. [c.39]

    При сгорании алканов на воздухе они окисляются до диоксида углерода и воды (на практике обычно не достигается полное сгорание, так что одним из продуктов окисления является оксид углерода). Жизнь современного человеческого общества неотделима от этого процесса. Получаемая с его помощью энергия используется для совершения работы (например, в двигателях внутреннего сгорания и дизелях) или для получения тепла (отопление метаном, газовые плиты на пропане и бутане, котельные на нефти). При полном сгорании углеводородов выделяется большое количество энергии, как видно из примера полного окисления метана  [c.119]

    Разработка способов фиксации атмосферного азота продолжается. Испытываются методы получения окиси азота в печах, где сжигается метан, бутан или пропан в токе нагретого до 1500° С воздуха. Температура при этом может быть повышена до 2000—3000° С. Ведутся исследования по окислению азота в так [c.93]

    В ранних работах было показано, что добавление озона к кислороду ускоряет окисление углеводородов С [47, 48], Сз и С4 [49, 50]. Кинетику реакции в газовой фазе изучали преимущественно на низших членах парафинового ряда — метане [2], пропане, бутане и изобутане [1]. Скорость реакции измеряли но [c.209]

    Парциальное каталитическое окисление углеводородов - основной способ получения ценные кислородсодержащих продуктов, таких, как органические кислоты и их ангидриды, оксиды олефинов и др. В качестве исходного сырья в этих процессах обычно используют низкомолекулярные олефины (этилен, пропилен, бутилены), ароматические и алкилароматические углеводороды (бензол, толуол, ксилолы, нафталин и др.). В промышленности реализованы и более сложные процессы, в которых каталитическому окислению подвергают смеси углеводородов с аммиаком (окислительный аммонолиз). В последнее время большое внимание уделяется процессам окислительного превращения насыщенных углеводородов (метан, этан, пропан, бутан). [c.4]


    Охват экзо- и эндотермических реакций гетерогенно-гомогенным механизмом был бы неполным без учета и каталитических реакций, требующих применения специальных активных контактов. К их числу относится так называемый мягкий катализ, позволяющий высокоселективно превращать этилен в окись этилена и метанол — в формальдегид при помощи серебряных контактов, нафталин — в фталевый ангидрид в присутствии нятиокиси ванадия и т. д. Механизм таких мягких каталитических реакций изучался в нашей лаборатории методом раздельного калориметрирования, т. е. в благоприятных для готерогенно-гомоген-ного катализа условиях катализаторы наносились топким слоем на поверхность стенок сосудов. В качестве покрытий применялись платина, серебро, пятиокись ванадия, бораты, силикаты, фосфаты и другие катализаторы. Объектами неполного окисления были метан, этилен, бутан-пронановая фракция нефтяных газов и метанол [11—13, 20—23, 41—45]. [c.374]

    Газовую составляющую конденсатов этого типа характеризуют прежде всего большие значения отношения С С (10—70). Метан имеет легкий и.с.у. (5 С 5—6 %). Среди бутанов часто доминирует изобутан. Отношение /-С составляет 10—15. Поскольку этот тип конденсатов может быть получен в результате биодеградации нефтей, образовавшихся из восстановленного и окисленного ОВ, эти два подтипа всегда легко можно выделить по характерным особенностям состава жидкой фазы. Нефти из восстановленного ОВ дадут конденсаты с легким изотопным составом углерода и серы, низким п/ф и нч/ч 1. Для бензиновых УВ отношение 6/5 1. Примером могут служить конденсаты пластов группы А Федоровского, Востокинского, Лянторского и Самотлорского месторождений. Соответственно нефти из окисленного ОВ дадут конденсаты, по ряду признаков жидкой фазы очень близкие к кон-денсату-1 (и.с.у., индивидуальный состав нафтенов и аренов, отношения нч/ч и п/ф). В газах конденсатов этого подтипа С /С до 100. Примером могут служить конденсаты верхних нефте- и газоносных горизонтов северных районов (месторождения Уренгойское, Соленинское, Пелят-кинское и др.). [c.115]

    Существует целый ряд углеводородов, по своим общим химическим свойствам совершенно анологичных метану. Соединения эти этан С Н , пропан СзН , бутан С,Н4,, пентан С5Н1, , гексан С Н], и т. д., пентатриаконтан Сз5Н, и другие, еще более сложные. Их состав может быть представлен общей формулой С Н2 2, которая годна и для формулы метана (л=1). Подобно метану все члены этого ряда трудно поддаются окислению, не изменяются от действия концентрированной серной кислоты и замещают водород галогенами, образуя соединения H.2 l, С Н, С1, и т. д. [c.30]

    В качестве топлива в биохимических ТЭ используются различные углеводороды в газообразном, жидком и твердом состояниях метан, этан, пропан, бутан, бутил-циклонентан, диметилциклогексан, амилциклогексан, различные окисленные и неокисленпые углеводороды и другие соединения. [c.348]

    В докладе Пауерса на IV Менадународном нефтяном конгрессе указывалось, что в США разработаны в промышленных масштабах мно гочисленные процессы гомогенного окисления углеводородов, в которых в качестве сырья используются метан, этап, пропан и бутан. [c.7]

    Диметилсульфид Метан или бутан 562 Диметилсульфоксид, диметилсуль-фон, ЗОз, СО, Н2О, НСНО Полное окисление 1 Продукты глубокого окисления Окислы марганца в проточной системе, 1 бао, 50—260° С, 1,5—7,5 сек [19]= органических соединений Марганцевые руды (20—30% Мп, 3—20% Fe, примеси Со, N1, Си) 250—482° С, 1,5 v. Катализатор более активен, чем промышленные fjOj и Pt на AI0O3 (0,1% Pt) [20] [c.562]

    Окисление парафинов в газовой фазг насыщенные алифатические соединения, например пропан и бутан, т. е. углеводороды, имеющие больше одного атома углерода в молекуле, в смеси с метаном и водяным паром при высокой температуре и давлении окисляются воздухом и дают альдегиды [c.193]

    Такой ясности в вопроса окисления этана, какая имеется применительно к метану, пока еще нет. Однако в результате си-стематичеаких исследований Ковальского, Садовникова, Чиркова, Энтелис [42], Енижолопяна [75] и других авторов и в области кинетики окисления этана получено много важных данных, позволяющих добиваться увеличения выходов продуктов окисления. Довольно широко описано окисление пропана [45, 76—80] и бутанов [81—83], где вскрывается механизм сложных цепных реакций. [c.321]

    Поступление, распределение и выведение из организма. А. широко представлены в растительной пище, в тканях животных и человека. Выдыхаемый жвачными животными воздух всегда содержит метан — продукт брожения клетчатки. Он входит также в состав выдыхаемого воздуха и кишечных газов у человека. У млекопитающих в выдыхаемом воздухе идентифицированы этан, пропан, бутан, пентан, образующиеся в процессе перекис-ного окисления липидов при интенсификации этого процесса введением этанола в выдыхаемом воздухе появлялись 2-метил-пропан (изобутан), 2-метилбутан (изопентан) (Соколов и др. Lang el al.). [c.13]

    Главнейшие способы получения углеводородов. Предельные углеводороды весьма широко распространены в природе. Богатым источником углеводородов является нефть. Особенно богата ими грозненская и западноукраинская нефти. Залежи нефти обычно сопровождаются скоплением газообразных углеводородов (метан, этан, пропан, бутан). Встречаются и твердые углеводороды (горный воск, или озокерит). В природе часто встречается асфальт, который рассматривается как продукт окисления и осмоления нефти. В СССР много асфальта на Сахалине, близ Сызрани и на Кавказе. Асфальт используется для приготовления лаков, кровельного толя и в дорожном строительстве. [c.54]

    Углеводороды, Реакция сульфирования парафиновых и циклопарафиновых углеводородов почти всегда в той или иной степени сопровождается окислением. В мягких условиях алканы с третичным атомом углерода подвергаются окислению с образованием карбоний-иона [152] с последующим обменом водорода. При повышенной температуре происходит миграция метильных групп, вероятно также по карбоний-ионному механизму. В то же время углеводороды, не содержащие третичных углеродных атомов, сравнительно устойчивы. Однако если еще более повысить температуру или увеличить силу реагента, то эти соединения также реагируют. Сопровождающие сульфирование [393] реакции дегидратации и окисления (с образованием SO 2) приводят к сложной смеси, содержащей карбонильные и оксисоединения, карбоновые кислоты и ненасыщенные соединения, а также сульфаты этих соединений, сульфокислоты, сульфоны, сультоны и эфиры сульфонатов. Метан при 260° С в присутствии HgS04 как катализатора образует метансульфокислоту и метилметансульфонат [363]. Пропан, к-бутан и изобутан в интервале 60—300° С образуют полиоксисульфоновые кислоты с частично сульфатированными гидроксильными группами [402]. Гексан, гептан и октан (строение их не определялось) подвергались сульфированию при температуре кипения парами SO3 [487] при этом образовались дисульфокислоты и одновременно наблюдалось сильное окисление. Изогексан неустановленного строения подвергался при —10° С сульфированию на 50% под действием SOg, растворенного в жидком SO 2 [204] w-декан в этих условиях не сульфировался. [c.40]

    За последние 15 лет нами было исследовано около 15 углеводородов, альдегидов и эфиров (метан, этан, пропан, пропилен, бутан, бутилен, нентап, циклогексан, гексадиен, ацетальдегид, метиловый, диэтиловый и диизонрониловый эфиры и т. д.) [7]. Во всех случаях накопление продуктов окисления описывается уравнением (2). [c.42]


Смотреть страницы где упоминается термин Окисление бутанов метана: [c.40]    [c.259]    [c.249]    [c.16]    [c.159]    [c.230]    [c.290]    [c.917]    [c.422]    [c.270]    [c.494]    [c.202]    [c.83]    [c.219]    [c.402]    [c.402]    [c.57]   
Химия цеолитов и катализ на цеолитах Том2 (1980) -- [ c.2 , c.2 , c.147 , c.192 ]




ПОИСК





Смотрите так же термины и статьи:

Бутан

Бутан Бутан

Бутанал

Метан-бутан



© 2025 chem21.info Реклама на сайте