Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конденсация олефинов с диолефинами

    Образующиеся олефины способны подвергаться дальнейшим превращениям, а именно разложению и конденсации. В числе продуктов крекинга парафинов находятся олефины, диолефины, ароматические и нафтеновые углеводороды, а при высоких температурах и ацетилен. Выяснение термодинамической возможности взаимных переходов углеводородов одних типов в другие имеет существенное значение для производства олефинов, описанного в данной главе, и для термических методов получения других углеводородов, которые рассматриваются в последующих главах. [c.103]


    Практически образование олефинов становится заметным при температурах выше 600° (гл. 12). Ароматические углеводороды образуются в той же области температур, т. е. при 600° и выше. По-видимому, они получаются главным образом в результате конденсации олефинов с диолефинами. Их образование можно подавить, если проводить процесс при температуре ниже 600° или при малой продолжительности реакции, что должно помешать развитию вторичных реакций. Условия образования ароматических углеводородов при синтезе их из более простых молекул или при распаде более сложных молекул обсуждаются в гл. 14 (стр. 253). [c.107]

    ВЗАИМНАЯ КОНДЕНСАЦИЯ ОЛЕФИНОВ И ДИОЛЕФИНОВ 685 [c.685]

    Понижение температуры слоя силикагеля в процессе адсорбции благоприятно сказывается на четкости разделения углеводородов [372] и, кроме того, уменьшает возможность протекания побочных реакций — полимеризации и конденсации. Основной причиной протекания побочных реакций при контактировании с силикагелем реакционноспособных олефинов, диолефинов и ароматических углеводородов является свободная кислотность силикагеля [465]. К тому же примеси окислов железа в силикагеле также могут явиться катализаторами полимеризации [331]. В связи с этим рекомендуется применение нейтральных сортов силикагелей с малым содержанием железа (до 0,02% вес.). [c.98]

    Образование диолефинов становится заметным при температурах выше 600° С (см. гл. XI). Ароматические углеводороды образуются в той же области температур, т. е. при 600° С и выше. Повидимому, они получаются в результате конденсации олефинов с диолефинами. Образование ароматических соединений можно устранить, если процесс проводить при температуре ниже 600° С или ограничить время протекания реакции. В гл. ХП1 указаны условия образования ароматических углеводородов при синтезе их из более простых молекул и при расщеплении более сложных молекул углеводородов. [c.91]

    Наряду с реакциями полимеризации и разложения идет циклизация и дегидрогенизация олефинов. Наличие насыщенных углеводородов в продуктах крекинга олефинов показывает, что при распаде не только образуются два олефина меньшего молекулярного веса, но протекает реакция перераспределения водорода с образованием системы парафин — диолефин. Последний, будучи весьма неустойчивым, вступает в реакции конденсации с олефинами. [c.29]


    В условиях обычного термического крекинга, особенно под давлением, диолефины являются весьма неустойчивыми соединениями и быстро подвергаются дальнейшим превращениям. При высокой концентрации олефинов вновь образовавшиеся диолефины вступают, очевидно, в различные реакции конденсации с олефинами с образованием циклоолефинов и дальнейшим превращением последних в нафтеновые или ароматические углеводороды. [c.125]

    Одновременно протекают вторичные реакции (нежелательные), приводящие к увеличению молекулярной массы углеводородов уплотнение и конденсация непредельных и ароматических углеводородов реакции полимеризации олефинов и диолефинов. [c.103]

    Прн термическом разложении полиметиленовых углеводородов при температурах 600—650 °С происходит расщепление с раскрытием цикла и образованием в качестве устойчивых форм непредельных углеводородов. Газообразные продукты при этом содержат значительное количество дивинила. Циклогексан, например, может образовать при этом до 20 /о (мол.) дивинила. Одновременно образуется олефиновый углеводород. При конденсации диолефина и олефина образуется бензол по уравнению  [c.78]

    Из бромидов цинком в водноспиртовом растворе были регенерированы соответствующие олефины и диолефины. О строении их судили по физическим константам, результатам озонолиза, конденсации с малеиновым ангидридом и по спектрам инфракрасным и комбинационного рассеяния. [c.204]

    I Олефины, углеродная цепь которых не допускает образования сопряженных двойных связей, например этилен и пропилен, да 0т водород и углерод. Образования ацетиленов или диолефинов алленового типа не наблюдалось. Изучено поведение бутадиена-1,3 в присутствии дегидрогенизирующих катализаторов и обнаружено, что он дает жидкие продукты полимеризации или конденсации (около 5%). При однократном пропускании моноолефинов получается 20—30% диолефинов. Дегидрогенизация бутиленов (в вакууме) с применением повторных обработок непревращенного остатка позволяет увеличить выход до 60—79%. [c.720]

    В температурных условиях пиролиза термодинамическая вероятность реакций полимеризации невысока. В этих условиях будут преобладать процессы деполимеризации, приводящие к получению олефинов с низким молекулярным весом, и в особенности процессы деструктивной конденсации с образованием диолефинов. Наличие в реакционной смеси легких олефинов и диолефинов и высокая температура процесса создают благоприятные условия для синтеза ароматических углеводородов. [c.231]

    Уже сравнительно давно известно, что альдегиды конденсируются с различными этиленовыми углеводородами. Конденсация этиленовых углеводородов (олефинов) с альдегидами была изучена с целью получения диеновых углеводородов (диолефинов), в частности изопрена, дивинила и др. [c.252]

    Реакции конденсации этиленовых углеводородов (олефинов) с альдегидами изучались с целью получения диеновых углеводородов, в частности изопрена, бутадиена и других диолефинов. [c.141]

    Реакции присоединения к олефинам (241). Реакции присоединения к диолефинам (241). Реакция с винилацетиленом (243). Реакции присоединения к кетену (245). Реакции конденсации с ароматическими соединениями. . .  [c.275]

    Окисление непредельных углеводородов сопровождается накоплением продуктов уплотнения и окислительной конденсации с образованием слюл. Чем выше непредельность смеси углеводородов, тем больше склонность к смоло- и осадкообразованию. Циклические олефины более склонны к реакциям окисления, чем олефины с открытой цепью. Наиболее легко изменяются диолефины и ароматические олефины, подвергаясь окислению и другим химическим превращениям. [c.65]

    Процесс термического разложения углеводородов, состоящий из многих элементарных реакций, которые протекают одновременно и последовательно, условно можно расчленить на две последовательные стадии. На первой стадии протекают первичные реакции термического расщепления алканов и циклоалканов с образованием олефинов,. диолефинов и алканов с меньшим, чем у исходных углеводородов или равным числом атомов углерода, а также водорода. На второй стадии образовавшиеся олефины и диолефины подвергаются реакциям дегидрирования, дальнейшего расщепления и конденсации с образованием циклических ненасыщенных (циклополиенов) и ароматических углеводородов. В дальнейшем ходе реакции [c.15]

    Таким образом, различные гипотетические комбинации реакций могут приводить к образованию ароматики из олефинов циклизация олефинов в циклогексаны с последующей дегидрогенизацией, конденсация олефинов с диолефинами в циклоолефины с последующей дегидрогенизацией и дегидрогенизация олефинов в ацетилены с последующей конденсацией. Иные еще неизвестные механизмы превращения [c.56]

    Подводя итог рассмотрению химических превращений углеводородов различного строения при температурах крекинга и пиролиза, можно сделать вывод, что при деструктивной переработке нефтяного сырья должны осуществляться следующие основные реакции распад, деалкилирование, дегидрирование, полимеризация, циклизация непредельных, дециклизация нафтенов, деструктивная конденсация олефинов, конденсация моноолефинов в диолефины, конденсации ароматических углеводородов, реакции глубокого уплотнения до кокса. От глубины этих реакдий и преобладания того или иного типа превращений углеводородов сырья и зависят выходы газа, бензина, промежуточных фракций, крекинг-ортатка и кокса, а также качество и химический состав целевых продуктов. [c.192]


    В отдельных работах указывается, что реакции эти можно заметно ускорит , применением высокого давления (1000—5000 ат) [38]. Температуры, при которых конденсации идут с подходящей скоростью, варьируют в очень широких пределах — от комнатной до 200°. Наиболее общим условием, рекомендуемым для синтетических работ, является нагревание в течение 10—30 час. при 100—170° в растворителе ароматического характера, например в ксилоле. Важно помнить, что во многих случаях с реакцией Дильса-Альдера конкурирует реакция свободно-радикальной сополимеризации олефинов и диолефинов, поэтому часто желательно добавление в такие системы антиокислителей. В качестве примера такой конкурирующей реакции (при соответствующим образом подобранных условиях) может служить реакция бутадиена и акрилонитрила, приводящая к образованию каучукоподобного полимера или тетрагидробензо-нитрила. Кроме того, как будет показано, конденсации по Дильсу-Аль-деру — практически обратимые реакции, поэтому продукты конденсации могут распадаться при более высоких температурах. По этой причине образование и пиролиз таких продуктов присоединения иногда оказываются удобным путем для проведения химического выделения, как, например, при очистке полициклических углеводородов [9, 20]. Однако температура, при которой происходит пиролиз, и выход регенерированного исходного вещества колеблются в широких пределах для разных систем. Некоторые из факторов, влияющих на это, будут обсуждены ниже более детально. [c.176]

    Диолефины термически более стабхгльны, чем олефины. Бутадиен-1,3 поянляется в нродуктах ппролиза при 600 °С и обнаруживается в них вплоть до 900 °С. Для него характерна при пиролизе конденсация с этиленовыми и ароматическими углеводородами, приводящая к образованию моно- и нолиароматических углеводородов. [c.417]

    Наиболее благоприятным сырьем для получения олефинов являются парафины, при термическом расщеплении которых-в тге-зультате дегидрирования и распада цепи получаются газообразные и жидкие парафины с меньшей молекулярной массой и олефины. При пиролизе пяти- и шестичленных циклоалканов наряду с водородом и олефинами образуются диолефины, в частности бутадиен. Присутствие последнего в продуктах пиролиза играет решающую роль в получении ароматических углеводородов. Согласно одной из гипотез, ароматические углеводороды образуются в результате вторичной реакции конденсации бутадиена с этиленом и его гомологами  [c.181]

    Реакции этого типа термодинамически возможны при очень умеренных температурах крекинга. Однако при умеренных температурах их скорость будет очень мала. Хорошо известно, что диолефины не образуются при умеренных температурах крекинга. Возможно, что рассматриваемые реакции легко протекают при высоких температурах (выше 500° С). Реакции этого типа вполне могут быть причиной образования парафинов из олефинов. Получающиеся диолефины подвергаются вторичным реакциям конденсации, ведущим к образованию ароматики, как будет показано в этой главе ниже. [c.50]

    Точный механизм превращения перекисей в смолу совершенно невыяснен. Смола может быть получена в результате разложения перекисей, давая высокомолекулярные кислоты, содержащиеся в смоле. С другой стороны, разложение перекисей может сопровождаться конденсацией других ненасыщенных углеводородов. Последняя гипотеза, повидимому наиболее вероятна, объясняя роль более стойких олефинов в смолообразовании. Диолефины и другие нестойкие ненасыщенные углеводороды дают перекиси, которые вовлекают в процесс другие более стойкие ненасыщенные углеводороды в дальнейших стадиях разложения и конденсации. Следует отметить, что степень смолообразования [c.321]

    С над окисью алюминия (1915, способ, получивший промышленное использование в 1942— 1943 в США) и альдольной конденсацией ацетальдегида (1905, способ, реализованный в промышленном масштабе в Германии в 1936). Совместно с Ф. Ф. Кошелевым осуществил (1915) полимеризацию изопрена под действием света. Получил изопрен пиролизом скипидара ( изопреновая лампа Остромысленского ). Независимо от А. Вернера установил (1910), что олефины образуют окрашенные комплексы п тетранитрометаном. Пришел к выводу (1915) о том, что диолефины вообще образуются при дезагрегации более сложных молекул и что углеводороды, содержащие свыше четырех атомов углерода, в том числе циклопарафины, при пиролизе отщепляют молекулу предельного углеводорода и превращаются в бутадиен. В 1922—1926 продолжал изучение синтетического каучука и процесса его вулканизации без серы. Исследовал по заданию фирмы Истмен Кодак возможные области применения поливинилхлорида. [c.378]

    Вещества, адсорбируемые поверхностью данного адсорбента, делаются способными подвергаться различным химическим измене-йиям. Так, олефины и диолефины под влиянием отбеливающих земель склонны к реакциям конденсации, з [c.78]

    Тот факт, что олефины с малым молекулярным весом могут вступать в реакцию конденсации с образованием олефинов большего молекулярного веса, был известен уже давно Hauber например, предложил нагревать низшие олефины до 250° в присутствии кремния для того, чтобы превратить их в высшие олефины. Feiler подвергал низшие олефины высокотемпературному электрическому разряду в замкнутом цикле, причем продукты реакции (олефины и диолефины) непрерывно удалялись путем охлаждения. Бутадиен был получен также при пропускании смеси, состоящей из 1- и 2-бутенов (полученных дегидратацией паров бутилового спирта при 320° над бокситом) и разбавленной азотом, через трубку, наполненную окисью кальция и нагретой до 700° [c.179]

    Олефин ы полимеризуются и вступают в реакции деструктивной конденсации с образованием диолефина и предельного углеводорода. В меньшей степени выражены реакцшг их расщепления и деполимеризации (образование низкомолекуляриых олефинов).  [c.218]

    Нефтяные продукты, крекированные в жестких условиях, представляют собой, по вполне понятным причинам, подходящий сырой материал для производства синтетических углеводородных смол путем полимеризации с безводным хлористым алюминием. Состав глубоко крекированного дестиллата представляет возможности для полимеризации олефинов, для комбинации олефинов с ароматикой в целях получения замещенной ароматики, для полимеризации и конденсации диолефинов и олефинов с образованием смол и комбинации диолефинов и олефинов с замещенной ароматикой при последующей полимеризации этого промежуточного продукта в смолы. [c.808]


Смотреть страницы где упоминается термин Конденсация олефинов с диолефинами: [c.182]    [c.57]    [c.56]    [c.15]    [c.685]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.685 ]




ПОИСК





Смотрите так же термины и статьи:

Диолефины

Диолефины из олефинов



© 2025 chem21.info Реклама на сайте