Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилен хлористый реакция

    На первой ступени ацетилен, разбавленный другими газами, избирательно взаимодействует с хлористым водородом, образуя хлорвинил этилен в реакцию не вступает. [c.203]

    I Полимеризация пропилена в полипропилен проводится в растворителе в пределах температур 20—120° С, но обычно при 60—80° С. Реакция ведется под давлением 2—8 ат в течение от /2 До 10 час. Молекулярный вес полученного полипропилена в зависимости от условий реакции и применяемых катализаторов находится в пределах 40 000—150 000— 700 ООО. Для того чтобы получить полипропилен заданного молекулярного веса, применяется ряд регуляторов молекулярного веса, способствующих обрыву кинетических цепей. В качестве регуляторов молекулярного веса используется молекулярный водород, который добавляется к этилену, хлористый водород и соединения, содержащие подвижный атом водорода амины, меркаптаны и пр. Полимеризация пропилена и других а-олефинов в присутствии анионных катализаторов происходит медленней, чем полимеризация этилена. [c.94]


    В реактор / — стальной аппарат колонного (для псевдоожи-женного слоя катализатора) или трубчатого (для стационарного слоя катализатора) типа —подают этилен, хлористый водород и воздух (или кислород) в соотношении, обеспечивающем 3—5%-ный избыток этилена (по объему). Температура реакции 210— 260 °С. Выходящие из реактора реакционные газы содержат пары [c.107]

    Для получения такого депрессатора (присадки для понижения температуры застывания масел типа парафлоу) конденсируют твердый парафин, хлорированный нри температуре 80 до содержания хлора, равного 14%, с нафталином в присутствии хлористого алюминия. В качестве разбавителя применяют хлористый этилен. Конденсацию ведут нри температуре 30— 35°, повышая ее перед концом реакции до 60°. [c.123]

    Для поддержания скорости реакции в процессе алкилирования можно также применять небольшие количества хлористого водорода как промотора для хлористого алюминия, путем добавления к этилену небольшого количества хлористого этила. [c.228]

    Реакцию изобутана с этиленом в присутствии хлористого алюминия можно описать при помощи следующих уравнений  [c.312]

    При реакции гидрохлорирования добав. 1енне свежего этилена к газовому потоку с первой колонны хлористого этилена автоматически регулируется так, чтобы отношение этилен/хлористый водород было 1 1. Поскольку 1 моль этилена реагирует с 1 молем хлористого водорода, отношение этилен/хлористый водород в потоке из реактора, возвращаемом потоке и потоке сдувочного газа составляет также 1 1. [c.407]

    Нагревание нафталина с этиленом хлористый водород в присутствии таких конденсирующих средств, как АЮ3 или Fe ls, приводит к образованию этил-(соотв. полиэтил-) нафталина. Ход реакции здесь вероятно таков [c.418]

    Процесс, вероятно, не включает образования промежуточного я-аллильного комплекса, поскольку такие комплексы не обнаруживают каталитических свойств в этих условиях. Комплекс этилен— хлористая платина имеет определенную, но низкую изомеризаци-онную активность в тех же реакциях. [c.471]

    Дихлорэтан 0 . 0 Ок Полное оь Этилен Пропан Хлористый этилен, на Реакции с учас Гомомолекулярный 01 01 исление молекул гисление углеводородов i СОг, СО, НаО УгОв 340° С [46] ием кислорода обмен кислорода УаОб 5—240 тар, 450—550° С [52, 53, 54 =] УгОб с добавками сульфатов щелочных металлов 40 пюр, 400—460° С. Активность растет с атомным весом добавляемого металла 53] ярным кислородом ( кислородсодержащих соединений УаОб 400° С [56] [c.549]


    При взаимодействии этилена с хлористым алюминием и хлористым водородом образуются подобные комплексы, ионы которых катализируют реакцию алкилирования толуола этиленом. Развитие реакции алкилирования происходит за счет взаимодействия катиона с поляризованной молекулой толуола. При этом появляется еще более сложный и неустойчивый С-катион, который после отщепления протона стабилизируется, образуя этилтолуол. Протон присоединяется к следующей молекуле этилена, образуя вновь этилкатион, реагирующий в свою очередь с другой молекулой толуола и т.д. [c.29]

    Различные типы молекулярных комплексов образуются и в системе этилен — хлор — хлористый водород. Реакция осуществляется при 98 К и, вероятно, идет в момент плавления эвтектической смеси молекулярных комплексов хлор — этилен и этилен — хлористый водород. В результате реакции с выходом, близким к 100%, образуется хроматографически чистый дихлорэтан. Применение хлористого водорода в качестве растворителя позволяет регулировать скорость процесса в отличие от реакции без растворителя. Кроме того, использование жидкого хлористого водорода позволяет проводить низкотемпературное хлорирование различных олефинов в условиях струи или барботажа хлора и олефина в колонны с жидким хлористым водородом. Все это открывает возможности для создания принципиально новых технологических процессов, позволяющих вести одностадийные синтезы и устраняющих дорогостоящее ректификационное разделение продуктов реакции. Кроме того, применение жидкого хлористого водорода в качестве растворителя весьма важно, так как хлористый водород образуется в качестве побочного продукта во многих химических производствах и его использование и утилизация представляют важную задачу. [c.131]

    В настоящее время разработан способ электрохимического хлоралкоксилирования [34], при котором выход Р-хлорэфиров составляет около 75%. По этому методу проводится электролиз НС1 в безводном метаноле при непрерывном насыщении реакционной смеси олефином. После реакции реакционная смесь разбавляется водой, и выделившийся слой подвергается перегонке. Авторы указывают, что выход -хлорэфира мало зависит от условий электролиза. Эта реакция была проведена с этиленом, хлористым вини-лом , бутадиеном [34]. [c.194]

    Выход винилхлорида можно повысить, хлорируя этилен при 350— 475° С в присутствии дихлорэтана [220]. Реакцию проводят в стеклянной трубке с электрообогревом, хлор подают в нескольких местах. За три часа при температуре нижней части трубки 294° С и верхней 450° С, молярном отношении этилен хлор=10 1 и молярном отношении дихлорэтана кхлору равном 0,50, образуется 80% хлористого винила (на хлор). Вместо дихлорэтана можно брать хлористый винил [221, 222], повышая выход винилхлорида таким образом до 90—98%. Молярное соотношение этилен хлористый винил хлор — 3 2 1, температура 420—450° С и время контакта 2—5 сек. Наряду с хлористым винилом образуется незначительное количество высших хлоридов. [c.286]

    Схема процесса по второму способу (в среде хлористого этила) совпадает со схемой получения бутилкаучука, т. е. сополимера изобутилепа с изопреном (рис. УИ-7). Отличие этой схемы от предшествующей состоит в том, что в ней используется реактор циркуляционного типа с интенсивным перемешиванием. В качестве инициатора применяют А1С1з в СН2С12 в количестве 0,02—0,03 вес.% от мономера. Общее время пребывания смеси в реакторе составляет 1—2 ч, конверсия достигает 70%. Реактор охлаждают жидким этиленом, температура реакции примерно —100 °С. Полимер выделяют водной дегазацией при 70—75 °С. [c.250]

    Сообщалось [174], что реакция между хлористым сульфурилом (содержащим следы S2 I2) и этиленом, хлористым винилом и пропиленом при комнатной температуре даст небольшие количества (до 15%) -хлоралкил-хлорсульфита. В случае пропилена продуктом реакции является 1S0—O H2 H I H3, который, как предположил Караш [173], получается по реакции [c.261]

    Показано, что этан, этилен, хлористый бензил, гексахлорэтап, тетра-хлорэтилеп, которые могли бы образоваться в результате свободнорадикального процесса, в продуктах реакции отсутствуют. [c.72]

    Хлорирование олефипов, основанное па реакции присоединения, имеет особо большое значение для этплепа. При де гствии газообразного хлора на газообразный этилен образуется хлористый этилен (1,2-дихлорэтан)  [c.180]

    При присоединении хлорноватистой хаюлоты к олефинам, например к этилену, образуются хлоралкоголи — соединения, в которых атом хлора и гидроксильная группа находятся у соседних углеродных атомов. Такие соединения называют хлоргидринами. Реакцией хлоргидринов со щелочами, сопровождающейся отщеплением хлористого водорода, очень легко образуются циклические эфиры, так называемые окисные соединения  [c.183]


    В результате гидролиза хлора образуется хлорноватистая кислота, которая тотчас вступает в i7 реакцию с этиленом путем непосредственного присоединения хлора к этилену. Процесс следует вести так, чтобы образование хлористого этилена не препятствовало хлоргидрированию. [c.183]

    Для получения хлористого этила в промышленных условиях сухой этилен и сухой хлористый водород в примерно эквимолекулярных количествах, при 35° и 2,5—3,0 ат нодают в реактор. Реакция идет в присутствии хлористого алюминия, растворенного в хлористом этиле (рис. 120). Образовавшийся хлористый этил испаряется [33]. [c.198]

    Его получеппе показано на схеме рис. 138 [67]. Жидкая смесь из хлористого метила, изобутена п изопрена в весовом соотношении 146 53 1 смешивается в реакторе при температуре от —80 до —90° с 0,3%-ным раствором безводного хлористого алюмиппя в хлористом метиле и полимеризуется. Тепло реакции отводится непосредственно с пспаряющимся этиленом. [c.225]

    Так, например, хлористый этилен при 300—425° можно хлориро- вать в ржплавленной соляной бане с образованием 1,1,2-трихлор-этана. При более высоких температурах в качестве основных продуктов реакции образуются ди- и трихлорэтилен. Образование этих соединений объясняется отщеплением хлористого водорода от трихлорэтана и тетрахлорэтапа при указанных высоких температурах. Этим же способом можно также проводить хлорирование бензола. [c.155]

    В табл. 67 приведены некоторые результаты, лолученные в опытах с перекисью бензоила в качестве источника свободных радикалов. В автоклаве с мешалкой (изготовленном из соответствующего материала) к 100 г 18,5%-ной соляной кислоты добавляют 0,5 г перекиси бензоила и действуют этиленом при начальном давлении 200 ат. После нагрева до 100° давление этилена поддерживают на уровне около 500 ат. Спустя примерно 11 час. образовавшиеся хлористые алкилы обрабатывают эфиром. При этом остается нерастворенной часть продуктов реакции, состоящая из хлоридов высокомолекулярных алкилов, содержащих 40—50 углеродных атомов в молекуле. [c.196]

    При конденсации вторичного хлорида (например, изопропилхлорида [47] или циклогексилхлорида [49]) с этиленом в присутствии хлористого алюминия обнаружены продукты взаимодействия одной молекулы хлорида с двумя молекулами олефина. Образование их может быть объяснено следующим образом первичные продукты реакции (изоамилхлорид и 2-циклогексилэтилхлорид, соответственно) содержат третичные атомы углерода, и происходит изомеризация промежуточных ионов карбония до третичных ионов. Так как третичные йоды карбония присоединяются к олефинам гораздо легче, чем вторичные, то образовавшиеся третичные ионы будут присоединяться гораздо быстрее, чем исходные вторичные ионы (изопропил и циклогексил). Поэтому конечные продукты подобны образующимся при конденсации этилена с соответствующими третичными хлоридами 1-хлор-3,3-диметилпентан и 1-(2-хлорэтил)-1-этилциклогексан, [c.220]

    Так, при этилировании циклогексана в присутствии хлористого алюминия происходит присоединение катиона метилциклопептила к этилену с образованием катиона 2-(1-метилциклопентил) этила. Последний изомеризуется до иона 1,2-диметилциклогексила, которые вступают в реакцию с циклогексаном, в результате чего образуется 1,2-диметилциклогексан и катион циклогексила, перегруппировка которого дает катион метилциклопентила. [c.231]

    Простейшие олефины так же действуют, как диенофилы, по требуют сравнительно более высоких температур. Например этилен и бутадиен при 200° дают циклогексен с выходом 18% [31]. С другими диенами были получены лучшие выходы, например с 2,3-диметилбутадиеном (50%) и циклопентадиеном (74%) [31]. При более высокой температуре такие реакции обратимы и пиролиз циклогексена является одним иа хороших лабораторных методов получения бутадиена. Винилацетат, хлористый винил, другие хлорзамещенные этилены и различные аллильные производные такн е вступают в реакцию конденсации с реакционноспособными диенами при 100—200°, однако известно, что все эти реакции должны проводиться при сравнительно высоких давлениях [27]. Стирол и другие фенилзамещенные этилены, по-видимому, в некоторых случаях вступают в реакцию, и, как будет показано ниже, молекулы диенов могут конденсироваться одна с другой, например, при димеризации бутадиена в ви-нилциклогексен [35]. Эта специфическая реакция весьма услон няет работу с бутадиеном. Конденсации такого рода в качестве побочной реакции возможны при любой из реакций Дильса-Альдера  [c.177]

    Галоидалкилы. 1-хлор-3,3-диметилбутан получается при взаимодействии /иретге-бутилхлорида с этиленом в присутствии хлористого алюминия [13]. Это реакция идет, вероятно, по цепному карбоний-ионному механизму [19]  [c.227]

    Пром( Жуточная форма (V) содержит третичный углеродный атом и легко изомеризуется в третичный катион (VI), который более реакционноспособен, чем исходный вторичный катион циклогексила, и легко вступает в реакцию конденсации с этиленом, давая (VII). Так как последний не содержит третичного углеродного атома, он не подвергается дальнейшей конденсации и поэтому (VIII) является основным продуктом реакции. Правдоподобность этого механизма (и доказательство структуры, приписываемой продукту) подтверждается тем, что (VIII) получается также при взаимодействии третичного соедипения 1-хлор-1-этил-циклогексана с этиленом в присутствии хлористого алюминия. [c.232]

    Изобутан и пропилен. Как и при чисто термическом алкилировании, алкилирование этиленом в присутствии галоидсодержащих катализаторов идет легче, чем алкилирование другими более высокомолекулярными олефинами. Так, например, для алкилирования изобутана пропиленом при 413° в присутствии хлористого пропилена необходимо давление 420 ат, чтобы получить выход жидких продуктов в 150% вес. на пропилен (теоретический выход гептанов на пропилен 238% вес.). Алкилирование в тех же условиях, но боз добавления катализатора, дает выход жидких продуктов лишь 65%. При снижении давления до 210 ат выход жидких продуктов в инициированной и чисто термической реакциях падает до 69 и 29% вес. соответственно. В опытах, проводимых в периодическом процессе при 400°, 280 ат и при времени реакции 15 мин., с использованием изобутан-пропиленовой смеси, содержаш,ей 10% вес. пропилена и 1—3% вес. трихлопропана, трибромпропана, хлора или брома, были получены выходы гептана 25—28% от теоретического (нри выходе жидких продуктов в количестве 140 170% вес. на взятый пропилен). [c.309]


Смотреть страницы где упоминается термин Этилен хлористый реакция: [c.15]    [c.15]    [c.288]    [c.288]    [c.471]    [c.34]    [c.40]    [c.247]    [c.288]    [c.77]    [c.260]    [c.219]    [c.220]    [c.222]    [c.310]    [c.310]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.527 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции этилена



© 2025 chem21.info Реклама на сайте