Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры светорассеяния

    Молекулярная теория находит подтверждение в ряде фактов и наблюдений. Во-первых, определение молекулярных весов в раа-бавленных растворах полимеров методами, прямо указывающими молекулярный вес частиц (например, методом светорассеяния), однозначно показало отсутствие в таких растворах мицелл, т. е. частиц, состоящих из агрегатов молекул. Во-вторых, растворение высокомолекулярного вещества, как и растворение низкомолекулярных соединений, идет самопроизвольно, часто с выделением тепла. Например, достаточно желатин внести в воду, а каучук в бензол, чтобы через некоторое время без какого-либо вмешательства извне образовался раствор полимера в растворителе. При диспергировании же вещества до коллоидного состояния, как известно, требуется затрата энергии на преодоление межмолекулярных сил. В-третьих, растворы полимеров термодинамически устойчивы и при соответствующих предосторожностях могут храниться сколь угодно долго. Коллоидные растворы, наоборот, термодинамически неустойчивы и способны стареть. Это объясняется тем, что при растворении полимеров всегда образуется гомогенная система и свободная энергия уменьшается, как, и при получении растворов низкомолекулярных веществ, либо за счет выделения тепла в результате взаимодействия полимера с растворителем, либо за счет увеличения энтропии. При получении же гетерогенной коллоидной системы ее свободная энергия всегда возрастает в результате увеличения поверхности дисперсной фазы. В-четвертых, растворение высокомолекулярных соединений не требует присутствия в системе специального стабилизатора. Лиофобные же золи не могут быть получены без специального стабилизатора, придающего системе агрегативную устойчивость. Наконец, растворы полимеров находятся в термодинамическом равновесии и являются обратимыми системами к ним приложимо известное правило фаз Гиббса. [c.434]


    Мицеллы ПАВ по размерам и молекулярно-кинетичес-ким свойствам близки к макромолекулам высокомолекулярных соединений, и для определения мицеллярной массы ПАВ пригодны те же методы, которые применяются для нахождения молекулярной массы полимеров. Эти методы основаны на измерении интенсивности светорассеяния, скорости диффузии, скорости седиментации в поле центробежной силы ультрацентрифуги. (В последнее время предложен метод, основанный на измерении оптической плотности мицеллярных растворов, содержащих солюбилизированный олеофиль-ный краситель. Однако он находит лишь ограниченное применение — пригоден для неионогенных ПАВ с невысокой степенью оксиэтилирования.) [c.157]

    Каково молекулярно-массовое распределение полимера, если значения молекулярных масс, определенных осмометрически, вискозиметрически и методом светорассеяния, для него совпадают  [c.74]

    Необходимо отметить, что уравнение Дебая применимо только для сильно разбавленных растворов полимеров, когда с < 0,1 %. При этом оно выполняется только в том случае, если размеры макромолекуляр-ных клубков не превышают 40—50 нм, т. е. меньше 1/10Х. При больших размерах рассеиваюш,их частиц в них возникает внутримолекулярная интерференция и суммарная интенсивность светорассеяния системой уменьшается. В результате при расчете по уравнению (V. 32) получаются заниженные значения молекулярной массы. Для определения истинных значений М в таких системах необходимо учесть зависимость интенсивности рассеянного света от угла 0 [см. уравнение (IV. 1)] и в уравнение Дебая ввести соответствующую поправку. [c.147]

    При определении молекулярных масс полимеров методом Дебая следует также учесть, что параметр т отражает светорассеяние, обусловленное только рассеивающими частицами, и не связан с рассеянием света растворителем, т. е. является избыточной величиной  [c.147]

    Вискозиметрический метод определения молекулярных масс не является абсолютным для каждой системы полимер — растворитель следует проводить сопоставление результатов, полученных этим методом, с данными, найденными посредством абсолютных методов — осмометрией или светорассеянием, и применять при этом полимеры, которые имеют очень узкое либо достоверно установленное молекулярно-массовое распределение. Если для данной системы полимер — растворитель установлена зависимость между вязкостью и молекулярной массой, то вискозиметрия является самым простым и быстрым методом определения молекулярных масс. [c.172]

    Кроме того, в полиуретанах удлинение успешно осуществляется не только на стадии получения преполимеров, но и на стадии отверждения конечного продукта. Несоответствие абсолютных значений молекулярной массы, полученных различными авторами, обусловлено особенностями строения полимеров, а именно наличием устойчивых ассоциатов высокой энергии когезии. Использование таких методов, как светорассеяние, осмометрия, ультрацентрифугирование, химический анализ концевых групп оправдано только для молекулярной массы эластомеров не выше 2,5-10 . Так, молекулярная масса линейных полиуретанов, определенная виско-зиметрически, составила З-Ю" [42]. Для полиуретанов молекулярной массы 5-10 и более можно считать вполне надежными данные спектров ЯМР [43]. [c.537]


    Растворы высокомолекулярных веществ способны рассеивать свет, хотя и в меньшей степени, чем типичные коллоидные системы. Дебаем предложен даже оптический метод определения молекулярного веса полимеров, основанный на измерении мутности их разбавленных растворов (величины, представляющей собой коэффициент ослабления света в результате светорассеяния при прохождении луча через слой раствора определенной толщины). [c.457]

    Наличие или отсутствие структурных элементов в некристаллических полимерах обычно оценивается с помощью структурных методов по дифракции рентгеновских лучей, электронов и нейтронов, методами поляризационной оптической микроскопии, светорассеяния и радиоспектроскопии. [c.26]

    Дебай, исходя из флуктуационной теории светорассеяния и используя уравнение (V. 5) для осмотического давления, получил соотношение между мутностью т раствора полимера, его массовой концентрацией с и молекулярной массой полимера М  [c.146]

    Средневзвешенная молекулярная масса может быть вычислена из данных, полученных при исследовании гидродинамических свойств разбавленных растворов полимеров (вискозиметрия, диффузия, ультрацентрифугирование), а также их оптических свойств (светорассеяние). Для молекулярных масс, определенных гидродинамическими методами, характерна существенная зависимость полученных значений Му, от степени полидисперсности высокомолекулярного соединения и от применяемого растворителя. Отсюда возникает возможность оценки полидисперсности по результатам изучения гидродинамических свойств в различных растворителях. Применение гидродинамических способов определения Му, требует предварительной калибровки по молекулярным массам. Метод светорассеяния является абсолютным. [c.31]

    Классические методы исследования полимеров — светорассеяние, седиментация, осмометрия, вискозиметрия и другие сталкиваются с существенными трудностями при анализе разветвленных и неоднородных по составу полимеров. Еще более сложен, а зачастую и невозможен анализ этими методами смесей таких полимеров с линейными полимерами. Подобные смеси часто возникают при синтезе сложных полимерных систем — блоксополимеров, привитых сополимеров и разветвленных гомополимеров, когда наряду с основным продуктом получаются соответствующие линейные гомополимеры. Сочетание ГПХ с классическими методами анализа полимеров и с другими хроматографическими методами (адсорбционной и пиролитической газовой хроматографиями) позволяет проводить анализ и таких сложных систем. При этом адсорбционную хроматографию можно с успехом использовать в тонкослойном варианте (ТСХ), что позволяет осуществлять качественный и количественный анализ структурной и химической неоднородности фракций, полученных микропрепаративным ГПХ-фракционированием. С помощью пиролитической газовой хроматографии (ПГХ) можно находить брутто-состав полимеров, а классические методы дают сведения о таких средних макромолекулярных характеристиках, как характеристическая вязкость, среднемассовая и среднечисленная молекулярные массы. [c.230]

    Для нескольких узких фракций исследуемого полимера каким-либо независимым методом (осмометрия, светорассеяние и др.) определяют значения ц М и строят зависимость lg[т)] от М. По тангенсу угла наклона прямой находят константу а, а по величине отрезка, отсекаемого прямой на оси lg[тl], определяют К. Значение констант /С и а берут из литературных данных значения К и а для некоторых пар полимер — растворитель приведены в табл. 11.4. При использовании литературных данных нужно Таблица 11.4, Значения констанг /С и а в уравнении [т)]=/СМ  [c.173]

    Растворы ВМС так же, как и лиофобные коллоиды, характеризуются светорассеянием, хотя величина рассеяния для них не так велика, как для лиофобных систем. Изменение величины рассеяния света используют в методе определения относительной массы полимеров. Метод основан на измерении мутности разбавленных растворов ВМС. При этом экспериментально измеряется коэффициент ослабления света в результате светорассеяния при прохождении его через слой раствора. [c.361]

    В последнее время получили распространение новые методы исследования структуры сетчатых полимеров светорассеяния под малыми углами в деформированном или недеформированном состоянии [151—153] и обращенная газовая хроматография [154]. В нервом методе получают сведения [c.34]

    Наиболее распространенным детектором в эксклюзионной хроматографии полимеров является дифференциальный рефрактометр. При работе с этим детектором следует помнить, что в диапазоне примерно до 5-10 —5-10 его сигнал зависит от молекулярной массы полимера. Поэтому при исследовании полимеров, содержащих значительное количество низкомолекулярных фракций, в процессе обработки результатов нужно вводить соответствующие поправки или, если это возможно, проводить специальную калибровку детектора. Из детекторов, разработанных специально для анализа полимеров, следует упомянуть вискозиметрический детектор и проточный лазерный нефелометр (детектор малоуглового лазерного светорассеяния). Эти детекторы в комбинации с рефрактометром или другим концентрационным детектором позволяют непрерывно определять молекулярную массу полимера в элюенте. При их использовании отпадает необходимость калибровки разделительной системы по исследуемому полимеру, но обработка информации может осуществляться только на ЭВМ. Вискозиметрический детектор, кроме того, является очень удобным прибором для исследования длинноцепной разветвленности синтетических полимеров. [c.43]


    Такой тип среднего получают при использовании метода светорассеяния-измерения интенсивности света, рассеянного разбавленными растворами полимеров [2—4]. [c.22]

    Для полимеров особое значение имеет малоугловое светорассеяние (в области углов до 30°), с его помощью можно получать информацию о кинетике структурообразования в полимерах, о деформации и разрушении их кристаллитов, а также о степени полидисперсности. Даже в случае гомогенных полимерных систем из-за частичной ориентации макромолекул и наличия флуктуации плотности метод малоуглового светорассеяния дает весьма полезную информацию. Например, изучая рассеяние света растворами полимеров, можно получать важную информацию о конформационных превращениях их макромолекул. [c.233]

    Одной из особенностей коллоидных растворов поверхностноактивных веществ является их способность к образованию мицелл. Молекулярный вес образующихся мицелл, так называемы мицел-лярный вес, составляет обычно несколько десятков тысяч. Значение средневесового мицеллярного веса ПАВ можно определить различными методами, которыми пользуются и для нахождения молекулярного веса полимеров. Сюда относятся методы, основанные на измерении светорассеяния растворами ПАВ и на определении диффузионной способности мицелл, а также метод седиментационпого анализа с помощью ультрацентрифуги. Наиболее эффективным и вместе с тем относительно простым методом оценки размеров коллоидных частиц в растворах является метод светорассеяния. С помощью этого метода определяют значение мицеллярного веса ПАВ в данной работе. Вывод теории светорассеяния применительно к разбавленным растворам ПАВ, содержащим мицеллы, размер которых не превышает /20 длины волны видимого света, может быть записан в следующей форме  [c.122]

    Определение молекулярного веса полипропилена любым из перечисленных методов затруднено из-за необходимости проведения исследований ири высоких температурах (при нормальной температуре приготовить даже сильно разбавленные растворы, обычно применяемые ири этих методах, можно только из атактической фракции). Кристаллические полимеры растворимы только ири температурах выше 100° С, что усложняет аппаратурное оформление и создает опасность деструкции полимера при длительном нагревании. По этой причине молекулярный вес полипропилена предпочитают определять более доступными методами, в том числе измерением вязкости раствора или расплава. Вискозиметрическое определение молекулярного веса в настоящее время еще не является, однако, абсолютным методом для любой системы полимер— растворитель. Для определения величины молекулярного веса вискозиметрическим методом требуется провести предварительную калибровку ири помощи какого-либо абсолютного метода, например осмометрии пли светорассеяния. Вискозиметрический метод применим лишь для линейных полимеров. [c.74]

    Светорассеяние концентрированных растворов полимеров обусловлено их неоднородностью, возникающей вследствие непрерывных небольших отклонений концентрации, которые вызывают в свою очередь отклонения (флуктуации) показателя преломления от его среднего значения. [c.457]

    Растворы полимеров помимо светорассеяния обнаруживают способность избирательно поглощать световые лучи. По ультрафиолетовым и инфракрасным спектрам поглощения можно судить о строении полимера — наличии в его молекулах определенных атомных групп, сопряженных двойных связей и т. д. Однако поскольку эти методы применяются для исследования растворов не только полимеров, но и органических веществ вообще, мы здесь останавливаться на них не будем. [c.459]

    Молекулярные массы серии узких фракций полимера определяют с помощью какого-либо абсолютного метода (осмометрии, светорассеяния и др.). Из прямолинейной зависимости Igh] от IgM находят К и а. [c.101]

    К среднемассовым относят такие методы определения молекулярной массы, которые основаны на установлении массы отдельных, макромолекул измерение скорости седиментации, скорости диффузии, светорассеяния в растворах полимеров. Значение среднемассовой молекулярной массы Л w представляет собой произведение массы всех фракций полимера на молекулярную массу фракции, отнесенное к ассе одной фракции Лiw= [c.18]

    Для изучения светорассеяния растворов полимеров применяют нефелометры различного типа (рис. 1.17). Пучок монохроматического света от источника 1 параллелизуется в оптической системе 2 и и через оптическое устройство 4 поступает в прибор 5. Испытуемый раствор, предварительно тщательно очищенный от примесей, помещают в кювету 6. Часть света, преломляясь, проходит через раствор и гасится в черной трубе 7. [c.52]

    Константы к п а для каждой системы полимер — растворитель находят эмпирически, путем подстановки в уравнение ( .19) найденного значения [т] ] и молекулярного веса, определенного одним из абсолютных методов (например, методом светорассеяния). [c.137]

    Г. Оптический метод или метод светорассеяния. Измерение молекулярных весов полимеров методом светорассеяния основано на том, что часть света, проходящего через любую систему (разбавленные растворы полимера), рассеивается вследствие неоднородности системы — наличия молекул полимера. Величина мутности разбавленного раствора полимера пропорциональна молекулярному весу растворенного полимера. [c.152]

    Методом светорассеяния определяют средневесовой молекулярный вес Мц, для полимеров молекулярного веса выше 20000. [c.152]

    Принципиальное отличие эксклюзионной хроматографии высокомолекулярных синтетических полимеров заключается в невозможности разделения смеси на индивидуальные соединения. Эти вещества представляют собой смесь полимергомологов с различной степенью полимеризации и соответственно с разными молекулярными массами Mi. Молекулярную массу таких смесей можно оценить некоторой средней величиной, которая зависит от способа усреднения. Содержание молекул каждой молекулярной массы Mi определяют либо по их численной доле в общем числе полимерных молекул, либо по массовой доле в их общей массе. Обычно полимер характеризуют найденными этими способами средними величинами, которые называют соответственно среднечисленной Мп и среднемассовой Mw молекулярной массой. Значения Мп дают, например, криоскопия, осмометрия, эбулиоскопия, а значения Mw — светорассеяние и ультрацентрифугирование. [c.49]

    Определение молекулярного всса методом светорассеяния сводится к нахождению степени мутности - раствора. Как н другие свойства полимеров, мутность их растворов изменяется не-иропорционально концентрапии. Отклонения от проиорциональ- [c.82]

    Средняя молекулярная масса нефракционированного полимера зависит от метода ее определения. Например, осмометрией находят среднечисловое значение, а по светорассеянию — среднемассовое. При описании молекулярно-кинетических свойств приводились некоторые методы определения молекулярных масс осмометрия, седиментация и седиментационное равновесие в центробежном поле. В дополнение к ним применяется также вискозиметрнческий метод. [c.212]

    Определение молекулярного песа методом светорассеяния. Световые лучи, проходя че-рез растворы полимеров, вы .ывают свечение с неизменной длиной волны, ио в направлениях, отличающихся от первоначального направления пучка света. Это явление называют с в е т о р а с сеяние м. Интенсивность проходящего света зависит от концентрации и величины макромолекул полимера, рассеивающих свет. На свойстве растворов полимеров рассеивать свет основано определение их молекулярного веса. Этот метод является одним из наиболее точных методов определения молекулярного веса Интенсивиость рассеянного света выражают через величинх мутности т, определяемую как долю первичного пучка, рассеянную во всех направлениях при прохождении светом в растворе пути длиной 1 см. Если при прохождении л см начальная интенсивность света / уменьшится до величины /. то мутность определяется из соотношения  [c.82]

    Светорассеяние и поглощение света. Цепные молекулы полимеров нельзя обнаружить в растворах при ультрамикроскопиче-ских наблюдениях. Это объясняется тем, что растворы полимеров гомогенны и линейные макромолекулы приближаются к коллоидным частицам только по длине, а в двух других направлениях соответствуют размерам обычных молекул. Кроме того, коэффициент преломления полимеров, как правило, сравнительно близок к коэффициенту преломления среды. [c.361]

    Измерены средние размеры полученных частиц при различных концентрациях полимеров методом динамического светорассеяния. Так, для полимеров с М 2000, 2600, 3300 максимальный вклад в распределение частиц по размерам вносят частицы с радиусом 20, 47 и 52 нм, соответственно. Наличие сферических частиц такого рашера подтверждено с помощью трансмиссионной электронной микроскопии. [c.92]

    Была изучена возможность образования структурированных полимерных систем в водной среде для амфифильных полимеров N-винилпирролидона с различной мoJJeкyляpнoй массой Методом динамического светорассеяния были рассчетаны средние радиусы полученных частиц при различных концентрациях полимера [c.78]

    Многие макроскопические характерпстики разветвленных полимеров определяются, помимо первично структуры молекул, пространственным расположением их звеньев. Так, например, при расчете средних размеров макромолекул, их гидродинамического радиуса пли интенсивности светорассеяния требуется проводить усреднение по вероятностной мере, которая учитывает не только способы химической связи фрагментов между собой, но и их взаимное расноложение в пространстве. Такая мера является необходимой для создания корректной теории формирования полимерных сеток с учетом внутримолекулярных реакций циклообразовапия. [c.146]

    Измеряют светорассеяние раствора одной концентрации под разными углами (30—150 ), получают прямую, которую экстраполируют к пулевому углу. Для различных концентраций полу чают серпю прямых (рис. 218), Экстраполируя прямую, соответ ствующую Нулевому углу к нулевой концентрации, получагот значение молекулярного веса полимера, Метод Цимма является наиболее точным для определения молекулярных весов. Пользуясь этим методом, можпо получить объективные размеры молекулярного клубка, независимо от правильности опенки конформации цепи. Однако для эторо требуется сложное аппаратурное оформление. В экспериментальном отпошенин значительно проще метод Дебая. [c.478]

    Средние значения М. м. иолимеров устанавливают с иомощью перечисленных выше методов, основанных на кол-лигативиом св-ве разбавл. р-ров, по числу двойных связей ( гмягким > озонолизом). функциональных групп (методами функционального анализа), а также по таким св-вам их р-ров, как вязкость, светорассеяние. Средние значения мол. масс полимеров высокой степени полимеризации опреде- ляют по их реологическим характеристикам. [c.349]


Смотреть страницы где упоминается термин Полимеры светорассеяния: [c.246]    [c.292]    [c.76]    [c.286]    [c.339]    [c.341]    [c.476]    [c.495]   
Хроматография полимеров (1978) -- [ c.230 ]




ПОИСК





Смотрите так же термины и статьи:

Индикатриса светорассеяния растворов полимеров и свойства ансамбля макромолекул. Рассеяние света и жесткость молекулярной цепи

ПРИМЕНЕНИЯ МЕТОДА СВЕТОРАССЕЯНИЯ К ИССЛЕДОВАНИЮ ПОЛИМЕРОВ В РАСТВОРАХ Определение молекулярных весов

Применение малоуглового светорассеяния в исследовании полимеров

Применение светорассеяния в исследовании полимеров

Светорассеяние Интенсивность рассеяния света в растворах полимеров

Светорассеяние полимеров в смешанных растворителях и избирательная адсорбция

Светорассеяние полимеров в тета-растворителях. Невозмущенные размеры и гибкость цепных молекул

Светорассеяние полимеров в хороших растворителях Роль объемных эффектов

Светорассеяние растворов полимеров



© 2025 chem21.info Реклама на сайте