Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие адгезионное

    Все существующие методы оценки адгезионной прочности можно разделить на три группы. К первой группе относятся методы определения адгезии п)тём отрыва, который происходит в результате нарушения адгезионного взаимодействия между адгезивом и субстратом Вторая группа методов основана на определении фактической адгезии без нарушения адгезионного взаимодействия. Третья группа методов даёт возможность получить относительные характеристики адгезионного взаимодействия - так называемые косвенные методы оценки адгезии. [c.9]


    Молекулярно-механическая (адгезионно-деформационная) теория трения, развитая И. В. Крагельским [236], базируется на следующих положениях. Трение обусловливается, с одной стороны, деформированием материала внедрившимися в него микронеровностями (деформационная составляющая), а с другой — преодолением адгезионных связей в зоне ФПК (адгезионная составляющая), т. е. образованием и разрушением фактических фрикционных связей, которые можно рассматривать как третье физическое тело [239]. Первым и обычно существенным фактором является адгезия в местах ФПК. При отсутствии взаимодействия между адгезией и деформацией полная сила трения будет равна [c.224]

    Адгезионная прочность - работа необходимая для разрушения адгезионного соединения В адгезионную прочность входят два вида работ - работа разрыва меж. ю. кулярных связей (адгезии) и работа дефор.мации компонентов адгезионного соединения. Чем прочней адгезионное сцепление, тем больше деформация взаимодействующих поверхностей, поэтому работа деформации может быть. многократно больше работы адгезии. [c.5]

    Адгезионное взаимодействие характеризуется величиной силы адгезии Рз, действующей на частицы, прилипшие к поверхности твердого тела, перпендикулярно этой поверхности. Сила адгезии численно равна, но направлена противоположно силе, [c.194]

    В процессе трения, как известно, важна специфика образования и разрушения фрикционных связей. Образование фрикционных связей характерно в основном для сухого трения, однако в той или иной мере оно реализуется и при гранич.ной смазке в условиях неоднородности микрорельефа поверхности и неравномерности распределения нагрузки на фактической площади контакта. Согласно теории И. В. Крагельского [255], различают пять видов фрикционных связей упругое оттеснение (деформация) материала, пластическое оттеснение (деформация) материала, микрорезание, адгезионное нарушение фрикционных связей, когезионный отрыв. Упругое оттеснение материала наблюдается в случае, когда действующая нагрузка не приводит к возникновению в зоне контакта напряжений, превышающих предел текучести. В этом случае такой важный трибологический параметр, как износ, возможен лишь в результате фрикционной усталости. Пластическое оттеснение происходит при контактных напряжениях, превышающих предел текучести (при этом износ определяется малоцикловой фрикционной усталостью). Мпкрорезание наблюдается при - напряжениях или деформациях, достигающих разрушающих значений (разрушение происходит при первых же актах взаимодействия). Адгезионное нарушение фрикционной связи непоередственно не приводит к разрушениям, но вносит определенный вклад в величину напряжений, действующих на контакт. Когезионный отрыв возникает в случае, если прочность фрикционной связи выше прочности нижележащего материала. [c.240]


    Адгезионная теория сухого трения [237] исходит из предпосылки, что взаимодействие трущихся поверхностей происходит не по всей номинальной площади контакта, а только по ФПК, которая определяется деформационными свойствами микровыступов (неровностей) поверхностей трения. В местах фактического контакта при соответствующих условиях происходит сваривание микровыступов. Для разрыва возникающих адгезионных связей ( мостиков сварки ) необходимо приложить силу, определяемую из соотношения (5.1). [c.224]

    Явления адгезии и смачивания тесно связаны между собой. Влияние смачивания на адгезионное взаимодействие отражает уравнение (I. 14). Из этого уравнения видно, что чем лучше смачивание (меньше Ор), тем больше работа адгезии. Максимальные значения 11 а могут реализоваться лини, при достижении полного смачивания поверхности твердого тела, когда соя б,, = 1 и == 2о>к-г = И к, (где — работа когезии для смачивающей жидкости). [c.21]

    Отложения асфальто-смолисто-парафиновых образований (АСПО) на поздней стадии разработки месторождений Татарстана и Башкортостана качественно изменились преобладает микроэмульсионная структура АСПО, повысилось содержание окисленных высокоактивных компонентов (асфальтенов), механических примесей и воды, что привело к увеличению адгезионных и когезионных сил взаимодействия с металлами. [c.176]

    Гидролиз солей. Реакция химического (обменного) взаимодействия растворенного вещества с растворителем носит общее название сольволиза. В том случае, когда растворителем является вода, мы говорим о гидролизе. Здесь мы встречаемся с обширной областью явлений, когда межчастичные взаимодействия адгезионного (стр. 99) или ионо-дипольного (стр. 80 ) характера переходят в химическое, сопровождающееся химическим изменением молекул воды. [c.214]

    Используя уравнение (VI.22), можно вычислить Wa по экспериментально измеренным значениям а г и os 0 . Оно показывает, что чем больще адгезия, тем больше os 0, т. е. смачивание. Таким образом, силы межфазного взаимодействия (адгезионные силы) стремятся растянуть каплю, в то время как силы когезии стягивают каплю до полусферы, препятствуя растеканию, поскольку с ростом знаменателя уравнения (VI.18), пропорционального IFe, уменьшается абсолютная величина os 0. [c.63]

    Следует отметить, что расчет энергии взаимодействия ме кду стеклянной поверхностью и полимерами с функциональными группами, проведенный П. И. Зубовым и А. Т. Санжаровским [97], по величине напряжений, возникающих в поверхностных слоях стекла при взаимодействии адгезионно связанной с ней полимерной пленкой, показывает, что энергия сцепления составляет - -ЗО ккал/моль, т. е приближается к величинам энергии химических связей. [c.234]

    Введение полярных групп в полиизопрен существенно, на порядок, повышает адгезионную прочность вулканизатов к стали от 0,03—0,05 МПа у СКИ-3 до 0,7—0,8 МПа, т. е. до уровня НК, у СКИ-ЗК и до 2,0—2,5 МПа у СКИ-ЗМ. Значительный вклад в увеличение адгезионной прочности вулканизатов на основе каучука СКИ-ЗМ вносят уретановые группировки, образующиеся при взаимодействии гидроксильных групп полимера с диизоцианатами. [c.232]

    На адгезию между контактирующими поверхностями оказывают влияние межмолекулярные силы их взаимодействия, число точек контакта и расстояние между этими точками, среда между контактирующими поверхностями и истинная площадь контакта. Полярные вещества (асфальтены, смолы) обладают большей адгезией к поверхности, чем слабополярные (парафино-нафтеновые углеводороды) или неполярные. Чем выше поляризуемость или чем больше полярность жидкого вещества, тем сильнее адгезионное взаимодействие между контактирующими поверхностями. Увеличению адгезии способствует повышение площади истинного контакта между связующим и поверхностью углерода путем заполнения связующим пор, трещин и микронеровностей поверхности углерода. [c.76]

    Одной из важнейших характеристик покрытия является адгезия его к подложке. Под адгезией в общем смысле понимается энергия межмолекулярного взаимодействия адгезива и субстрата. Единой теории, описывающей механизм возникновения адгезионной связи покрытия с подложкой, не существует. Есть несколько теорий механическая, адсорбционная, диффузионная и электрическая. [c.24]

    В результате классификации факторов и явлений, приводящих к нарушению работоспособных состояний агрегатов, и исследованиями влияния технологических факторов и конструкционных особенностей агрегатов на их работоспособное состояние установлены закономерности адгезионного, диффузионного и коррозионного взаимодействия нефтяных остатков с металлами в условиях высоких температур. [c.41]

    Обычно катионные эмульсии обладают более универсальными свойствами в отношении заполнителей самой разной химической природы. Это связано с физикохимическим характером взаимодействия элементов дисперсной фазы катионных эмульсий с поверхностью. Кроме того, катионоактивный эмульгатор в некоторой степени гидрофобизирует поверхность, выступая в роли адгезионной присадки, улучшающей сцепление вяжущего с поверхностью. Механизм разрушения катионных и анионных битумных эмульсий подробно рассмотрен в главе 1.2. [c.189]

    Смысл параметров уа Е достаточно сложен. Эти величины зависят не только от статической свободной энергии поверхности и модуля упругости взаимодействующих (полимерных) материалов, но и от совершаемой при расслоении адгезионного слоя работы деформации и поверхностной активности применяемого связующего (третья фаза) [40]. [c.73]


    Встает вопрос, каким образом уменьшить влияние диффузионных процессов Нужно отметить, что последние тесно связаны с адгезией. Для уменьшения интенсивности адгезионного взаимодействия успешно применяются разделительные смазки, в основном, на базе графита [69,70]. Такие разделительные смазки имеют недостатки необходимость частого нанесения (малая прочность), для качественного смешения компонентов требуется воздействие ультразвукового поля и т.д. [c.118]

    Влияние покрытий на адгезионное и диффузионное взаимодействие кокса с металлами [c.122]

    Таким образом, при взаимодействии наноструктурных волокнистых наполнителей с полимерными связующими благодаря высокой адгезионной способности волокон происходило их смачивание, заполнение пор и межволоконных каналов жидкими смолами, которые в процессе пиролиза превращались в углеродный пек. Последний при нагревании взаимодействовал с волокнами, образуя индивидуальные оксикарбиды металлов, а выше 1900 С формировался твердый раствор оксикарбидов циркония и гафния кубической структ ы. [c.196]

    Использование цеолита крупной грануляции (3-3,5 мм) не позволило достичь существенной очистки водной поверхности от нефтяной пленки, так как в процессе быстрого прохождения гранул цеолита через нефтяной слой не обеспечивалось прочное адгезионное взаимодействие цеолита с нефтью. [c.54]

    Совершенно очевидно также,. что диффузия одного полимера в другой представляет собой явление растворения. Взаиморастворимость полимеров, к-рая в основном определяется соотношением их полярностей, очень важна для А., что вполне согласуется с известным правилом Дебройна. Однако заметная А. может наблюдаться и между несовместимыми, сильно различающимися по полярности полимерами, в результате т. наз. локальной диффузии, или локального растворения. Локальное растворение неполярного полимера в полярном можно объяснить неоднородностью микроструктуры полярного полимера, возникающей в результате того, что полимер, состоящий из цепей с полярными и неполярными участками достаточной протяженности, всегда претерпевает микрорасслаивание, подобное происходящему в смесях сильно различающихся по полярности полимеров. Такое локальное растворение вероятно в случае, когда диффундируют углеводородные цепи, т. к. в полярных полимерах объем неполярных участков обычно больше объема полярных групп. Этим и объясняется то, что неполярные эластомеры обычно проявляют заметную А. к полярным высокомолекулярным субстратам, в то время как полярные эластомеры к неполярным субстратам почти не прилипают. В случае неполярных полимеров локальная диффузия может обусловливаться наличием в одном или обоих полимерах надмолекулярных структур, исключающих диффузию в определенных участках межфазной поверхности. Значение рассмотренного процесса локального растворения, или локальной диффузии, для А. тем более вероятно, что, по расчетам, достаточно проникновения в субстрат молекул адгезива всего на несколько десятых нм (несколько А), чтобы адгезионная прочность возросла во много раз. В последнее время Догадкиным и Кулезневым развивается концепция, согласно к-рой на межфазной поверхности контакта двух мало- или почти полностью несовместимых полимеров может происходить диффузия концевых сегментов их молекул (сегментальная диффузия). Обоснованием этой точки зрения является то, что совместимость полимеров увеличивается с уменьшением их мол. массы. Кроме того, образование прочного адгезионного соединения может определяться не только взаимопереплетением молекулярных цепей в зоне контакта из-за объемной диффузии, но и диффузией молекул одного полимера по поверхности другого. Даже тогда, когда А. обусловливается чисто адсорбционными взаимодействиями, адгезионная прочность практически никогда не достигает своего предельного значения, поскольку активные груп- [c.11]

    Наиболее изученным случаем (в силу его практической значимости) является взаимодействие адгезионных соединений с водой [310], приводящее к почти полному отделению адгезива от субстрата [310-312] даже тогда, когда высокополярные растворители не оказывают влияния на прочность систем с межфазными химическими связями. Этот эффект зависит от продолжительности обработки систем водой. Соответствующую зависимость можно выразить в логарифмической форме [313]. Величина наблюдаемого эффекта в существенной мере определяется природой субстрата так, полиэтилен чувствительнее к действию воды, чем полика-проамид [314] алюминий, титан и сталь чувствительнее, чем медь [312]. Применительно к полимерам подобные закономерности Яхнин связывает с изменением надмолекулярной организации-с укрупнением глобулярных образований в процессе водопоглощения и восстановлением их первоначальных размеров после высущивания [311]. Следовательно, после удаления воды первоначальная прочность адгезионных соединений может восстанавливаться вплоть до исходной. Этот вывод находит подтверждение в системах, в которых существует сетка дисперсионных связей, например в металлополимерных соединениях, полученных с применением полиэтилена, поликапроамида [315] и сополимера бутилметакрилата с метакрило-вой кислотой [311], причем в первом случае обратимое изменение прочности проявляется при воздействии на систему с последующим удалением не только воды, но также бензола, ксилола и ацетона. Подобные эффекты недавно обнаружены для образцов полистирола, помещенных в водно-мета-нольные смеси [316]. Более того, такой эффект наблюдается в соединениях с межфазной сеткой водородных связей, например в системе металл-эпоксидный адгезив [317], или в композитном материале на основе эпоксидной композиции, армированной углеродными волокнами [318]. Прямое доказательство существования обсуждаемого эффекта получено Оуэнсом на [c.74]

    Приведенные данные показывают, что наиболее вероятным механизмом взаимодействия адгезионных соединений с водой является проникновение последней в клеевой шов с последующим распределением в нем. Тогда нельзя не учитывать пластифицирующего действия влаги на адгезив, проявляющегося при действии не только на такие полимеры как полистирол [316], но и на весьма жесткие эпоксидные адгезивы [318, 336]. Небольшие количества воды способны, сорбируясь в аморфных областях адгезива, разрыхлять его структуру и тем самым интенсифицировать межфазное взаимодействие, например полиамидов [328]. И, наконец, вода может приводить к образованию граничных слоев пониженной когезионной прочности (слабых граничных слоев), отрицательно сказывающихся на прочности системы в целом. В пределе проникшая через клеевой шов вода может сорбироваться по поверхности субстрата, обусловливая адгезионный характер разрушения соединения. Этим можно объяснить недавно обнаруженную линейную зависимость между сопротивлением отрыву пентапластового покрытия от стали и концентрацией паров воды в атмосфере [337]. Противоположный эффект характерен, по-ви-димому, только для отдельных типов металлополимерных адгезионных соединений, воздействие воды на которые может привести к их эффективному взаимодействию с субстратом. Такой случай наблюдали на примере алюминия, покрытого полиамидами, когда образующиеся гидроксиды обусловили когезионный характер разрушения системы и рост ее прочности [338]. [c.77]

    Эффективность распознавания представленного антигенного комплекса ТКР зависит еще от прочности межклеточного контакта, которая обеспечивается дополнительным взаимодействием адгезионных молекул, экспрессированных на мембране АПК (I AM-1, LFA-1) с соответствующими лигандами на мембране Т-лимфоцита (LFA-2, LFA-3, V AM-1, VLA-4) [70]. [c.164]

    Функция истечения сыпучего материала [8] представляет собой зависимость главного разрушающего напряжения оГр (при Од = О, (Т = (Тр) от уплотняющего напряжения Оу и определяется экспериментально при конкретных условиях времени выдержки Т1 образца сыпучего материала под нагрузкой а , влажности образца 2 температуре у. При Тх = О функцию истечения Ор = = / (Оу) называют мгновенной. В этом случае связи между частицами определяются только уплотнением материала. При > О функцию истечения называют временной. Здесь к связям между частицами прибавляются адгезионные межмолекулярцые взаимодействия. Разрушение этих связей можно осуществить механическим путем (например, вибрацией в бункере). [c.13]

    Для псевдоожиженного слоя характерно сложное взаи.чодействие различных сил трения между соседними частицами, движущимися с различными скоростями, статических адгезионных сил взаимодействия между частицами, гравитационных, а также силы лобового сопротивления потоку ожижающего агента. Влияние гравитационных сил и силы лобового сопротивления, действующих на твердые частицы, изучено достаточно хорошо. Роль сил трения, статических адгезионных сил взаимодействия между частицами (т, е. реология) в псевдоожиженном слое изучена слабо число публикаций, посвященных реологическим свойствам псевдоожиженных систе.п, весьма невелико. [c.228]

    Укрупнение частиц может идти двумя путями. Один из них, называемый изотермической перегонкой, заключается в переносе вещества от мелких частиц к крупным, так как химический потенциал последних меньше (эффект Кельвина). В результате мелкие частицы постепенно растворяются (испаряются), а крупные растут. Второй путь, наиболее характерный и общий для дисперсных систем, представляет собой /соаг(/ля <и/о, заключающуюся в слипании (слиянии) частиц дисперсной фазы. В общем смысле под коагуляцией понимают дотерю агрегативной устойчивости дисперсной системы. Коагулящ я в разбавленных сИЖМах приводит к потере, седимеитационной устойчивости и в конечном итоге к расслоению (разделению) фаз. К процессу коагуляции относят адгезионное взаимодействие частиц дисперсной фазы с макроповерхностями. В более узком смысле коагуляцией называют слипание частиц, процесс слияния частиц получил название коалесценции. В концентрированных системах коагуляция может проявляться в образовании объемной структуры, в которой равномерно распределена дисперсионная среда. В соответствии с двумя разными результатами коагуляции различаются и методы наблюдения и фиксирования этого процесса. Укрупнение частиц ведет, нанример, к увеличению мутности раствора, уменьшению осмотического давления. Структурообразование изменяет реологические свойства системы, например, возрастает вязкость, замедляется ее течение. [c.271]

    Таким образом, смачивающая способность жидкостей и адгезионное взаимодействие их с твердыми телами в основном определяются природой веществ, составляющих контактирующие фазы. Сопоставление уравнений (Т 12) и (I. 14) показывает, что высокая адгезия между фазами может реализоваться лишь прн определенном соотношении значений Стт-г и сГж-г (сгт-г > сГж-г)- Решзющее значение при этом играет состояние поверхности твердого тела и его поверхностное натяжение. [c.21]

    Механизм действия моющих присадок многообразен и зависит от их свойств в объеме масла и на поверхности металла. Важными составляющими действия моющих присадок в объеме масла являются пептизация (диспергирование продуктов уплотнения), солюбилизация (поглощение углеродистых образований мицеллами присадок) и стабилизация суспензии твердых частиц (предотвращение их слипания и осал<дения). К поиерхпостному действию присадок относят понижение адгезионного взаимодействия частиц нагаров с металлическими поверхностями, некоторые электрические и другие эффекты. Эффективность щзисадок повышается при способности их тормозить процессы окисления углеводородов масел и нейтрализовать образующиеся кислоты. Существенны также концентрация присадок и состав масел. [c.307]

    Во-вторых, нанесение полимерного защитного покрытия резко меняет природу материала подложки место кристаллического атомного соединения - металла - занимает аморфное атомное соединение - полимер, т.е. происходит замена типа электронной структуры материала подложки. Замена кристаллического атомного соединения, у которого каждый электрон взаимодействует сразу со всей системой в целом, на аморфное атомное соединение, электронная структура которого представляет собой набор дискретных уровней, разделенных высокими потенциальными барьерами, препятствующими распределению электронных волн за границу каждой данной межатомной связи, меняет механизм взаимодействия подложки с такими типичными молекулярными твердыми соединениями, какими являются кристаллические парафиновые частицы. В результате такой замены более интенсивная адгезионная связь, основанная на образовании двойного электрического слоя, возникающего в результате контактной электризации поверхностей металла и парафиновой частицы, с энергией более 65 кДж/моль /56/, сменяется адгезионной связью, определяемой ван-дер-ваальсовыми силами, энергия которых не превышает 50 кДж/моль. Поэтому смена металлической поверхности на полимерную уже сама по себе должна привести к ослаблению адгезионной связи. Действительно, как бьшо показано экспериментально /30/, сила прилипания парафина к поверхности такого наиболее интенсивно парафинирующегося полимера, как полиэтилен, в 2,3 раза ниже, чем у стали. [c.143]

    Омыленный таловый пек представляет собой в нормальных условиях нетоксичный пожаробезопасный и удобный в транспортировке продукт твердой консистенции. Растворяясь в пресной воде, образует коллоидный раствор, при взаимодействии которого с катионами кальция, магния и ионов хлора образуется гелеобразная масса. При затвердевании эта масса имеет достаточно высокую механическую прочность. Однако слабое адгезионное взаимодействие между гелем и металлической поверхностью не позволяет использовать этот материал в тампонажных работах. [c.116]

    При высокой шероховатости истинная поверхность контакта будет существенно превышать номинальную и определяющим фактором запарафинирования окажется величина поверхности контакта фаз, а не природа поверхности подложки. Поэтому при модификации поверхностной энергии подложки воздействием присадки влияние последней на величину адгезионного взаимодействия парафина с поверхностью подложки окажется мало-значимым. Реальность такого предположения подтверждается результатами работы /44/, где установлено, что шероховатые поверхности любой природы достагочно интенсивно запарафинируются в условиях скважины. [c.147]

    К числу методов одновременного отрыва адгезива относится метод центрифугирюва-ния. Адгезив заранее наносится на поверхность, которая затем совершает вращение вокруг вертикальной или горизонтальной оси (рис. 1.1,в). Возникающая при этом центробежная сила стремиться оторвать прилипший адгезив. Отрыв адгезива происходит в том случае, когда центробежная сила превышает величину адгезионного взаимодействия. [c.10]

    Третья весьма важная особенность рассматриваемой системы — наличие адгезионной связи покрытия с металлом. Если возникновение адгезии связывать с явлением адсорбционного взаимодействия адгезива с субстратом, то в адгезионном слое электрохимически активная поверхность металла сокращается до величины 1—0, где 0 — степень заполнения поверхности мoлeкy. Iai ш пленкообразующего вещества. В результате создаются стерические затруднения в возникновении и формировании адсорбционных и электролитических плепок на металле. Разумеется, адгезионный слой тем дольше будет тормозить развитие коррозиоппого процесса, чем больше 6 и чем прочнее связь атомов металла (или окисла) с сегментами пли фун1Щиональными группами макромолекул пленкообразующего вещества. [c.41]

    Методами радиоактивных индикаторов и ЭПР доказано, что ответственными за адгезионное взаимодействие продуктов переработки углеводо-родног о сырья с поверхностью металлов являются соединения, способные к межмолекулярным взаимодействиям - парамагнитные частицы и полярные соединения. По характеру изотермы адсорбции нефтяного пека показано, что взаимодействие нефтяных остатков с поверхностью металлов происходит по механизму хемосорбции [29]. [c.19]


Смотреть страницы где упоминается термин Взаимодействие адгезионное: [c.56]    [c.62]    [c.56]    [c.14]    [c.78]    [c.64]    [c.67]    [c.68]    [c.65]    [c.111]    [c.41]    [c.413]   
Курс коллоидной химии 1984 (1984) -- [ c.242 ]

Курс коллоидной химии 1995 (1995) -- [ c.266 ]

Курс коллоидной химии (1984) -- [ c.242 ]

Основы переработки пластмасс (1985) -- [ c.192 ]




ПОИСК





Смотрите так же термины и статьи:

Адгезионное взаимодействие на границе пленка подложка и полимер наполнитель

Адсорбция природа адгезионного взаимодействия

Бикермана критерий адгезионного взаимодействия

Взаимодействие полимеров при адгезионном контакте

МЕЖФАЗНОЕ МОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ II АДГЕЗИОННАЯ ПРОЧНОСТЬ

Модификация поверхности наполнителей для усиления адгезионного взаимодействия

Расплавы особенности адгезионного взаимодействия

Смачивание расплавами и особенности их адгезионного взаимодействия

Энергетика адгезионного взаимодействия полимеров



© 2025 chem21.info Реклама на сайте