Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сульфиды, фторирование

    Электрохимическое фторирование начало развиваться лишь в последнее время, по оно имеет ряд преимуществ по сравнению с только что описанными методами. Сущность его состоит в следующем при электролизе безводного фтористого водорода (с добавлением фторидов металлов для повышения электропроводности) выделяющийся на аноде фтор немедленно реагирует с растворенным или эмульгированным в жидкости органическим веществом. Благодаря протеканию реакций в жидкой фазе при перемешивании, достигается хороший теплоотвод и суы ествуют широкие возможности регулирования процесса. При этом не приходится предварительно получать и очищать молекулярный фтор, который все равно производят в промыщленности методом электролиза. Наилучшие результаты электрохимическое фторирование дает при синтезе перфторзамещенных карбоновых кислот, простых и сложных эфиров, аминов, сульфидов и других соединений, растворимых в жидком фтористом водороде. [c.162]


    В литературе встречается немало дезориентирующих сведений о состоянии работающего катализатора. Так, используемый оксидный катализатор часто восстанавливается до металла или превращается в смесь оксида и металла. Поэтому приходится проводить предварительную обработку или активацию данного катализатора. В ходе реакции гидрообессеривания оксидный катализатор превращается в сульфид, а в реакции фторирования—во фторид. Нередко один и тот же оксидный катализатор используется в нескольких различных реакциях. В действительности же в одном случае он оказывается сульфидом, а в другом—смесью металла и оксида. Для разработки рационального способа получения нового катализатора важно знать состав эксплуатируемого катализатора, который в некоторых случаях мало похож на исходный. [c.8]

    Известны промышленные процессы изомеризации на хлористом алюминии в его присутствии можно осуществлять реакцию при низких температурах — от 50 до 150° С. Поскольку процессы подробно описаны [8, 75], далее они не рассматриваются. Весьма активно влияют на реакцию изомеризации катализаторы гидрогенизации и дегидрирования (сульфид вольфрама, окись молибдена, платина и др.) [76—79]. В промыщленности широко применяют платиновые и палладиевые катализаторы на кислых носителях — синтетических алюмосиликатах и фторированной окиси алюминия [7, 78, 80]. Эти катализаторы активны при 370—480° С. Несмотря на менее благоприятные термодинамические условия проведения реакции, чем при использовании хлористого алюминия, над платиновыми катализаторами также удается достичь глубокой изомеризации легких углеводородов. Так, степень изомеризации н-пентана за один проход может достигать 50—60%  [c.330]

    Реагенты 64 и 66 оказались высокоэффективными фторирующими средствами для введения фтора в стероиды, ароматические соединения, соли С-Н-кислот, сульфиды, содержащие а-Н-атомы [162, 177, 178]. Процессы идут в мягких условиях и дают продукты фторирования с высоким выходом (табл. 21). [c.119]

    Частично и полностью фторированные олефины имеют весьма важное промышленное значение. Во-первых, они являются промежуточными продуктами очень многих синтезов фторсодержащих веществ — спиртов, эфиров, кислот, сульфидов, нитрилов, амидов и т. д. Во-вторых, что, пожалуй, наиболее важно, фторолефины используются в производстве фторпластов, где они служат исходными продуктами полимеризации и сополимеризации. [c.79]


    Непредельные фторированные сульфиды лучше получать отщеплением HF от продуктов присоединения фторолефинов к тио-фенолам [193]  [c.240]

    П и электрохимическом фторировании сульфидов образуются соединения щестивалентной серы °  [c.473]

    Химические реакции также можно использовать для контроля процесса испарения (разд. 4.4.6). Они уже упоминались в связи с добавками угольного порошка. Как отмечалось при обсуждении разрядов в специальных атмосферах (разд. 3.2.5), наиболее обшей методикой, примененной для металлов, руд и шлаков, является хлорирование, позволяющее использовать постоянные аналитические кривые. Обычно дистилляция с носителем оказывает общее селективное действие, а хлорирование или фторирование не подавляет матричного эффекта, а только изменяет его [32]. Летучесть группы следов элементов можно увеличить с помощью галогенирующих добавок. Так, предел обнаружения некоторых элементов в порошке белого чугуна можно значительно снизить использованием в качестве добавки фторида натрия, при этом висмут, бор и алюминий можно определять в количествах 1-10 , 5-10 и 5-10 % соответственно [33]. Фторид свинца особенно подходит для увеличения чувствительности определения менее летучих элементов в минералах и горных породах, а также для термического разложения соединений с высокой температурой кипения. Добавляя к пробе фторид свинца в соотношении 1 1, можно определять элементы, образующие летучие фториды (Ве, 2г, ЫЬ, Та, W, 5с, X, некоторые редкоземельные металлы), с пределом обнаружения порядка 10 % и воспроизводимостью около 10%. Тетрафторэтилен (тефлон) также пригоден для использования в качестве фторирующего агента [34]. При анализе главным образом металлов группы железа в качестве носителя часто используется хлорид серебра. При разбавлении пробы не менее чем в 400 раз матричный эффект можно снизить до такого уровня, что становится возможным определение основных компонентов и примесей в материалах различного состава [35]. В этом случае хлорид серебра действует и как носитель. Летучие сульфиды также подходят в качестве носителя, если соответствующие термохимические реакции вызываются добавкой серы [36] или одновременно сульфата бария, серы и оксида галлия [37]. Таким способом можно увеличить чувствительность определения германия и олова в геологических пробах. Принимая во внимание термохимические свойства проб и различных добавок и составляя соответствующие смеси, можно в желаемом направлении влиять на ход испарения й создавать условия, благоприятные для группового или индивидуального определения элементов [38, 39]. Селективное испарение можно использовать в специальных источниках излучения (разд. 3.3.4) или даже в качестве предварительного способа разделения (разд. 2.3.6). [c.122]

    Описаны условия получения гексафторида серы электрохимическим фторированием сульфида карбонила [119]. Последний предварительно получают, барботируя окись углерода через расплав серы при 200—450° С. Образовавшийся продукт помещают в электролитическую ячейку, содержащую безводную плавиковую кислоту и 4 г/л NaF. Электролиз проводят при плотности тока 320 А/м на аноде из никеля или монель-металла и температуре электролита 5—6° С. Выход гексафторида серы в оптимальных условиях достигает 99%. [c.121]

    В качестве твердых активных веществ применяют оксиды (диоксид марганца, оксиды молибдена, оксиды меди) и халько-гениды (сульфиды железа, сульфид титана, сульфид меди и др.) металлов, а также фторированный углерод. Их смешивают с токопроводящими добавками (сажа и графит) и связующими веществами и наносят на никелевую сетку методом прессования или намазывания, обеспечивая высокую пористость актив- [c.242]

    Применение щелочных металлов в качестве отрицательных электродов источников тока всегда представлялось заманчивым из-за высокого отрицательного потенциала и больших токов обмена. Однако в водных растворах использование щелочных металлов связано с чрезвычайно большими трудностями. В современных вариантах источников тока со щелочными металлами применяют расплавы солей, органические растворители (апротонные растворители) или твердые электролиты. Наиболее перспективны две последние группы источников тока. В химических источниках тока с апротонными растворителями в качестве анода используют литий, что позволяет достигать значительных ЭДС (до 3—4 В) и высоких значений удельной энергии. В качестве материала катода применяют галогениды, сульфиды, оксиды и другие соединения. Особый интерес представляют катоды ща основе фторированного углерода. Это вещество нестехиометрического состава с общей формулой ( F r)n получают при взаимодействии углерода с фтором при 400—450 °С. При работе такого катода образуются углерод и ион фтора. Разработаны литиевые источники тока с жидкими окислителями (системы SO b — Li и SO2 — Li). Предпринимаются попытки создания аккумуляторов с использованием литиевого электрода в электролитах на основе апротонных растворителей. Литиевые источники тока предназначаются в основном для питания радиоэлектронной аппаратуры, кардиостимуляторов, электрических часов и т. д. [c.266]


    Безводные фториды MF3 получают фторированием металлов, окислов, сульфидов и других соединений при нагревании. Трифториды галлия и индия могут быть получены также при термическом разложении (600° С) (ЫН4)зМРб в инертной атмосфере  [c.175]

    Фториды. Безводный фторид ОаРз получается фторированием при нагревании металла, окиси, сульфида и некоторых других соединений. Другой путь получения — нагревание гексафторогаллата аммония в токе аргона при 600° [53]  [c.237]

    В качестве катодных материалов рекомендованы сульфиды, хлориды, фториды, оксиды ряда металлов (Ag, Си, N1, Со, Hg и др.). Большой практический интерес представляет разработанный впервые в Японии катод из фторированного углерода (СРх)п. Значение х вдожет изменяться от 0,13 до 2 в элементах используют фторуглерод, у которого X находится в пределах от 0,8 до 1,35. Это твердое вещество, которое получают фторированием искусственного графита, кокса, ацетиленовой сажи при нагревании в атмосфере фтора до 250—450 °С в течение И ч. Во фторуглероде атомы фтора располагаются между слоями графита и ковалентно связаны с атомами углерода. Восстановление полифторуглерода проходит по уравнению (СРд ) + пхе ->- С + пх  [c.82]

    Фторирование неорганических окислов является одним из старейших методов получения неорганических фторидов. Классическим примером является синтез фторида мышьяка(П1) из его окисла, фторида кальция и серной кислоты [224]. Этот общий метод синтеза фторидов, однако, не получил большого распространения до самого последнего времени, когда была обнаружена высокая реакционная способность тетрафторида серы и трифторида брома в реакциях с окислами и сульфидами. В настоящее время наиболее важными реагентами при фторировании окислов и сульфидов является фтор, трифторид брома, тетрафторид серы, тетрафторид селена, фтористый водород и фторосульфоновая кислота. [c.354]

    III) из окиси марганца(П) или МП3О4 при 100° [254]. В результате взаимодействия фтора с двуокисями титана и циркония при 350 и 525° соответственно получают количественный выход фторидов титана(1У) п цирконпя(1У) [117]. Фторирование сульфидов элементарным фтором приводит к образованию бинарных фторидов. Эти реакции требуют более мягких условий, чем фторирование окислов при этом сера выделяется в виде соответствующих фторидов. [c.355]

    Фторирование сульфидов, а также азот- и серосодержащих гетероциклов изучено Фучигами [72-79] и Лораном [80, 81] с сотрудниками. Сульфиды фторируются в -положение к атому серы [77]. [c.53]

    Лоран [81] и Фучигами [72-78] с сотрудниками выявили образование а-монофторпроизводных при анодном фторировании таких сульфидов, у которых при метиленовой группе находится электроноакцепторный заместитель. [c.53]

    N-Фтopпиpидиниeвыe соли проявляют регио- и стереоселективность при фторировании ароматических соединений, карбанионов, активированных метиленовых соединений, реактивов Гриньяра, натриевых солей С-Н-кислот, винилацетатов, енолятов, алкиловых и силиловых эфиров енолов, органических сульфидов и енамидов, олефинов и др. (табл. 19). Так, при действии реагента 32 на анизол в СНС СНгС] в присутствии п-толуолсульфокислоты при 120 °С за 18 ч образуется смесь изомерных фторанизолов (выход орт< -изомера составляет 19%, пара-изомера - 17%) [144]. [c.101]

    Взаимодействие различных сульфидов с Ы-фтор-2,4,6-триметил-пиридинийтрифлатом 33 приводит ко фторированию по метильной или метиленовой группе сульфидов [157]. [c.107]

    Суш ественное снижение предела обнаружения мышьяка достигается с помощью термохимических реакций. Наиболее полная характеристика термохимических процессов в электродах угольной дуги приведена в работах [435, 1045]. К основным термохимическим реакциям в угольных электродах дуги, применяемым при определении мышьяка в разнообразных объектах, относятся реакции сульфидирования (добавление серы [134], сульфидов [45] или восстанавливающ,ихся до сульфидов сульфатов) и фторирования (добавки фторидов N3, А1, Си, РЬ и др.) [1046]. С помощью сульфидирования при анализе двуокиси титана предел обнаружения мышьяка удалось снизить до 1-10 % [256]. При определении мышьяка в меди применение СиГа в качестве фторирующего агента при использовании дуги постоянного тока (14а), оптимального времени экспозиции (10 сек.) и дифракционного спектрографа позволило определить 5-10 % Аз [1161]. Низкий предел обнаружения мышьяка достигается путем применения метода глобульной дуги . Глобульная дуга в настоящее время получила широкое применение при анализе ряда металлов Сг, Мп, Ре, Со, N1, Си, Т1, Ag, 8п и др. В чистой меди этот метод позволяет определять до [c.94]

    Сульфат Н. применяют в стекольном производстве, при получении сульфатной целлюлозы, в текстильной, мыловаренной, кожевенной промышленности, в цветной металлургии, в медицине и ветеринарии он является сырьем для получения силиката и сульфида Н. Сульфит Н. применяют в фотографии, в химико-фармацевтической промышленности, в медицине, производстве искусственных волокон. Тиосульфат Н. применяют в фотографии, в текстильной, кожевенной промышленности, медицине, ветеринарии, как реактив в аналитической химии. Трифосфат Н. является неорганической основой синтетических моющих средств. Фторид Н. применяют в химической, металлургической (при электролитическом получении алюминия, бериллия и др.), стекольной, цементной промышленности при изготовлении протеиновых клеев, консервантов для дерева, мяса, масла, средств для удаления ржавчины, инсектицидов его используют для фторирования питьевой воды он входит в состав препаратов для лечения кариеса зубов, остеопороза и отосклероза. Хлорат Н. служит гербицидом и дефолиантом его используют при производстве оксида хлора(IV) и перхлората Н. в качестве окислителя. Хлорид Н. — повареппая соль является сырьем для получения гидроксида, карбоната, сульфата Н., хлора. [c.34]

    Целый ряд низщих2° 22 более сложных сульфидов . 2з подвергали электрохимическому фторированию. Наряду с гексафторидом серы и фторуглеродами, образующимися в результате разрыва обеих связей С—5, из простых сульфидов выделены еще два типа продуктов бис-(перфторалкил)-тиотетра-фториды, соответствующие исходному сульфиду, и перфторал-килтиопентафториды, возникающие при разрыве лишь одной связи С—8  [c.503]

    Заслуживает внимания другая методика, включающая гидролиз, так как она является общим методом полз чеиия перфторал-кандикарбоновых кислот из а,со-бис(метилтио)полифторалканов [60]. Теломеризация тетрафторэтилена в присутствии диметилди-сульфида и грег-бутилпероксида в качестве катализатора приводит к продуктам типа (21) схема (65) . Как видно из схемы, эти продукты (п = 2—5) гидролизуются серной кислотой в метаноле до метиловых эфиров фторированных дикарбоновых кислот. [c.96]

    Методом электрохимического фторирования получены фторпроизводные многих органических веществ перфтор-карбоновые кислоты, перфтороктан, полностью фторированные окиси алифатических углеводородов, ацилфто-риды, простые и сложные эфиры, алифатические, ароматические и гетероциклические амины, сульфиды и другие полифторированные соединения. [c.64]


Смотреть страницы где упоминается термин Сульфиды, фторирование: [c.130]    [c.530]    [c.53]    [c.163]    [c.263]    [c.8]    [c.59]    [c.240]    [c.172]    [c.117]    [c.459]    [c.503]    [c.506]    [c.153]    [c.223]    [c.168]    [c.503]    [c.506]   
Успехи химии фтора (1964) -- [ c.473 , c.493 , c.503 ]

Успехи химии фтора Тома 1 2 (1964) -- [ c.473 , c.493 , c.503 ]




ПОИСК







© 2025 chem21.info Реклама на сайте