Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медь применение в качестве материала для

    Сначала расплавляют узкую зону, совпадающую с левым концом стержня. Так как эта зона слева не контактирует с твердой фазой, то концентрация примеси в ней остается равной Со. Незначительное передвижение нагревателя в правую сторону приведет к кристаллизации металла слева от нагревателя и перемещению расплавленной зоны в правую сторону. В первой порции затвердевшего металла концентрация примеси составит С == Со, и, так как L < 1, она будет меньше исходной. Дальнейшее перемещение расплавленной зоны приводит к увеличению концентрации примеси в л<идкости и накоплению примеси в правом конце стержня. Многократное прохождение зоны вдоль стержня приводит к глубокой очистке металла и достижению особых свойств. Примером может служить очистка германия, используемого в качестве полупроводникового материала. Присутствие в этом металле ничтожных количеств меди, железа, никеля резко изменяет его проводимость и делает непригодным для применения в радиотехнических устройствах. Очистка зонной плавкой снижает содержание указанных элементов до концентрации, меньшей, чем одни атом примеси на I i атомов германия. [c.101]


    Общие свойства меди и ее сплавов. Медь, помимо широкого применения в технике по причине ее высокой электропроводности, используется в химическом машиностроении в качестве конструкционного материала для изготовления разнообразной химической аппаратуры и в особенности теплообменной аппаратуры (выпарные аппараты,теплообменники,конденсаторы, испарители, змеевики и т. п.). Объясняется это высокой теплопроводностью меди и ее сплавов, их благоприятными физико-механическими свойствами при достаточно высокой [c.245]

    Наиболее широкое применение для технических измерений получили проводниковые термопреобразователи сопротивления, изготавливаемые из платины и меди. Использование этих металлов в качестве материала для термопреобразователей сопротив-. ления обусловлено их физической и химической стойкостью при рабочих температурах, химической инертностью по отношению к исследуемой среде, а также их высоким средним относительным температурным коэффициентом сопротивления. [c.315]

    Окрашивание мономера при хранении обусловлено как экстракцией красящего вещества из окисленного полимера, образующегося на внутренних конструкциях крыши резервуара, так и химическим взаимодействием ТБК, влаги и ржавчины, длительный контакт стирола с медьсодержащими сплавами (латунью, бронзой, монель-металлом) и с самой медью придает мономеру сине-зеленый цвет. Видимо, нужно осторожно относиться к рекомендациям по применению меди в качестве материала емкости для стирола или средства усиления ингибирующего эффекта гидрохинона [60.1213, учитывая возможность окрашивания мономера. В работе [1223 указывалось, что применение меди или ее сплавов для этих целей исключается, и емкости или цистерны для хранения и перевозки стирола следует изготовлять из железа или алюминия. Схема рекомендуемого конструкционного оформления складских резервуаров для хранения стирола приведена в работе [1203. [c.70]

    О г применения меди в качестве материала для изготовления оборудования в спиртовой промышленности приходится отказаться вследствие ее дефицитности и дороговизны, кроме того, в брагоперегонных аппаратах ион меди действует токсично на дрожжи, придает растворам спирта неприятный вкус и изменяет их, свойства. [c.60]

    Образование нелокализованных электронных пар характерно и для органических соединений, в которых есть сопряженные двойные связи (так называются двойные связи, чередующиеся с единичными), например бутадиен-1,3, или дивинил СНа=СН—СН=СН2, гекса-триен-1,3,5 СНг=СН—СН=СН—СН=СНа и др. Особенно интересны вещества, молекулы которых содержат системы сопряженных двойных связей (полиены, красители, некоторые полимеры и др.). Их электропроводность лежит в интервале проводимости полупроводников и достигает значения порядка 10" oм м , а в ряде случаев-доходит до 0 ом -см . Проводимость в этих соединениях имеет электронный характер, носителями тока являются нелокализованные р-электроны, очень подвижные, принадлежащие всей системе в целом. Некоторые органические полупроводники используются уже сейчас. Например, фталоцианин меди нашел применение в качестве материала для фотопроводящих мишеней в передающих телевизионных трубках (видиконах). [c.99]


    Для обработки нетканых материалов можно применять жидкости ГКЖ-10 и ГКЖ-11, полиметил-и полиметилфенилсилоксаны и кремнийорганические полимеры, модифицированные органическими смолами. В зависимости от назначения нетканых материалов применяют различные способы отделки их силоксанами. Значительно повысить водоупорность и снизить водопоглощение фильтровальных нетканых материалов из лавсана можно обработкой их эмульсией ГКЖ-94 и смолы Ф-9 [13, с. 82]. При применении 50%-ной эмульсии ГКЖ-94 и уксуснокислой меди в качестве катализатора с последующей термообработкой ткани при 140 °С водоупорность ее повышается с О у непропитанпого материала до 0,9 кПа (90 мм вод. ст.), а водопоглощение снижается в 10 раз. При этом сохраняется воздухопроницаемость материала, что весьма важно, учитывая специфику его применения в цементной промышленности. [c.242]

    Хорошо известно применение меди в качестве проводника электричества кроме того, она используется как материал приборов для работ с фтором (см. часть II, гл. 3). Из меди изготавливаются также теплообменники (например, змеевики). В продаже имеются медные трубки самых различных размеров. Если их предварительно отжечь, то гораздо легче придать им необходимую форму. Поскольку при изгибании твердость трубок снова возрастает, операцию отжига полезно повторить. Гибкие коммуникации, например между стальным баллоном с газом и аппаратурой, изготовляются из тонких медных трубок, которые могут быть припаяны к резьбовому соединению или спаяны со стеклянными трубками (см. рис. 2). При прокаливании в атмосфере водорода медь становится хрупкой. [c.34]

    В качестве материала подложки использовался алюминий. Применение алюминиевых сплавов при пользовании переменным током не рекомендуется, так как медь, входящая в сплав, отлагается в пленке в катодный полупериод и происходит растравливание пленки. [c.296]

    Термометры сопротивления изготовляют из металлов, которые при изменении температуры заметно меняют свое электрическое сопротивление. В качестве материала для промышленных термометров сопротивления обычно используют платину, медь или никель. Однако способность изменять сопротивление в зависимости от температуры присуща также и полупроводникам вполне возможно, что по мере усовершенствования полупроводниковых материалов они найдут широкое применение в термометрах сопротивления. [c.384]

    Около 0,9 всех марганцовых руд применяются в металлургической промышленности для получения марганцово-железных сплавов (чугуна, зеркального чугуна, ферромарганца и т. д.) около 0,1 их находят применение в химической промышленности (производство хлора и белильной извести, солей марганцовой и марганцовистой кислот, производство стекла, изготовления олифы [лаков] и т. д.) кроме того, совсем незначительные количества их идут на получение содержащих Мп металлических сплавов, в частности для приготовления сплава с медью, никкелем и железом, с недавнего времени нашедшего себе применение в качестве материала для электросопротивления. [c.228]

    Свинец. Применение свинца в качестве конструкционного материала ограничено его низкими прочностными свойствами. Металл рекристаллизуется после механической деформации уже при комнатной температуре с образованием менее прочно связанных между собой крупных зерен. Рекристаллизации способствуют добавки висмута и олова, которые внедряются в твердый раствор, тогда как добавки меди, кальция и железа подавляют рекристаллизацию, образуя в свинцовой матрице интерметаллические соединения. [c.36]

    Медь и ее сплавы. Вследствие дефицитности, высокой стоимости и недостаточной химической стойкости во многих средах (минеральные кислоты, аммиак, хлориды и т. д.) медь находит ограниченное применение в качестве материала для химической аппаратуры. Однако она имеет весьма ценное свойство — сохраняет пластичность при весьма низких температурах. Поэтому для аппаратуры, работающей в таких условиях, медь является очень удобным материалом. Верхняя предельная температура применения меди 400° С. [c.18]

    Для деталей из меди и латуни наиболее простым электролитом является раствор ортофосфорной кислоты плотностью 1,6—1,65 г/см . Рабочая температура электролита должна находиться в пределах 290—300 К. При повышении температуры сверх указанной может иметь место растравливание поверхности,, вследствие чего ванны для электрополирования снабжают охлаждающим устройством. Анодная плотность тока может быть от 5—10 до 30— 50 А/дм с применением медных листов в качестве катодов. Продолжительность процесса зависит от состояния поверхности и колеблется от 5—6 мин для шлифованных деталей до 2—3 мин для штампованных деталей из листового проката. Электролит требует предварительной проработки на бракованных деталях. При эксплуатации электролита следует соблюдать общие правила в качестве материала подвесок применять медь или алюминий полировать одновременно только детали одного наименования и изготовленные из металла одной марки не за- [c.195]

    В качестве материала для изготовления поглотителей эфира применяется медь, однако возможно применение и стали. [c.126]


    При практическом использовании полипропилена в качестве материала для изоляции проводов серьезную помеху представляет катализируемое медью окисление, не устраняемое антиоксидантами. Применение оксамида и его производных ослабляет вредное действие меди по-видимому, при этом образуются внутрикомплексные соединения . Полипропиленовое волокно в случае недостаточной его стабилизации при испытании в наружных условиях через 2—3 мес. теряет прочность и делается менее эластичным . [c.201]

    Применение титана в качестве материала для предохранительных мембран ограничивается также в связи с его специфическим поведением при воздействии механических нагрузок. В отличие от большинства металлов (алюминий, сталь, медь и др.) сопротивление титана деформации и относительное удлинение существенно зависят от скорости приложения нагрузки. Поэтому для обеспечения нормальной работоспособности титановых мембран их предварительное выпучивание следует проводить при более строго фиксированных условиях испытаний, чем для мембран из других материалов. Несмотря на высокую температуру плавления, титан обнаруживает склонность к ползучести даже при комнатной температуре  [c.114]

    Провода и кабели — самая крупная сфера применения пластмасс в электротехнике и электронике — около половины потребляемого объема. Благодаря простоте переработки и низкой стоимости в качестве материала здесь преобладает ПВХ. Однако галогенсодержащие полимерные системы обычно более подвержены коррозии под действием меди, а смеси, содержащие хлор, мохут выделять вредные вещества при утилизации. Учитывая рост внимания государственных регулирующих органов к проблемам воздействия на окружающую среду, широкое использование ПВХ в будущем представляется сомнительным. [c.430]

    Из всех легких металлов наиболее важным в технике является алюминий. Тонкая, но крайне плотная и твердая пленка окислов надежно защищает его поверхность от коррозии. Чистый или слаболегированный алюминий обладает очень высокой электропроводимостью и, в связи с этим, нашел широчайшее применение в качестве материала для проводников в электротехнике. Из-за низкого предела прочности (около 70-100 МПа) чистый алюминий неприменим как конструкционный материал. Однако, если к нему при плавке добавить некоторые элементы, то после определенных операций и последующей термообработки можно получить до 500 МПа. В качестве конструкционных материалов применяются сплавы алюминия с медью, с кремнием и с магнием, которые незаменимы при сооружении легких высотных конструкций. [c.50]

    Углеводы являются чрезвычайно важным классом природных соединений. Исследование их химических свойств может дать ценную информацию о механизмах реакций и стереохимии. Значительным достижением в настоящее время является применение углеводов в качестве хиральных синтонов и заготовок для стерео-специфического синтеза таких соединений, как простагландины, аминокислоты, гетероциклические производные, липиды и т. д. Для биолога значение углеводов заключается в доминирующей роли, которая отводится им в живых организмах, и в сложности их функций. Углеводы участвуют в большинстве биохимических процессов в виде макромолекулярных частиц, хотя во многих биологических жидкостях содержатся моно- и дисахариды, а большинство растений содержит глюкозу, фруктозу и сахарозу. Только растения способны осуществлять полный синтез углеводов посредством фотосинтеза, в процессе которого атмосферный диоксид углерода превращается в углеводы, причем в качестве источника энергии используется свет (см. гл. 28.2). В результате этого накапливается огромное количество гомополисахаридов — целлюлозы (структурный материал) и крахмала (запасной питательный материал). Некоторые растения, в особенности сахарный тростник и сахарная свекла, накапливают относительно большие количества уникального дисахарида сахарозы (а-О-глюкопиранозил-р-О-фруктофуранозида), который выделяют в значительных количествах (82-10 т в год). Сахароза — наиболее дешевое, доступное, Чистое органическое вещество, запасы которого (в отличие от запасов нефти и продуктов ее переработки) можно восполнять. -Глюкоза известна уже в течение нескольких веков из-за ее способности кристаллизоваться из засахаривающегося меда и винного сусла. В промышленном масштабе ее получают гидролизом крахмала, причем в настоящее время применяют непрерывную Схему с использованием ферментов, иммобилизованных на твердом полимерном носителе. [c.127]

    В качестве источников света в практике спектрального анализа нашли широкое применение электрическая дуга переменного или постоянного тока и высоковольтная искра, получаемые при использовании специальных генераторов. В этом случае электрический разряд осуществляется путем подачи соответствующего напряжения на электроды, устанавливаемые в штатив-держатель таким образом, чтобы разрядный промежуток между электродами был расположен на оптической оси спектрального прибора. Электроды представляют собой преимущественно стержни, изготовляемые из какого-либо токопроводящего материала (угля, меди, алюминия и т.п.), содержащего минимальное количество примесей и имеющего эмиссионный спектр с небольшим количеством линий. Анализируемую [c.322]

    Более эффективно, чем описанные выше, работают колонны с насадкой, представляющей собой по возможности мелкозернистый материал, свободно насыпанный в колонну. Насадка может быть изготовлена из стекла, фарфора или металла (бронза, медь, сталь). Стеклянные кольца Рашига не так эффективны, как кольца из проволочной сетки. Применение последних ведет, однако, из-за их большой поверхности, по которой растекается пленка жидкости, к сильному увеличению объема удерживаемой жидкости в колонне. Кроме того, широкое применение в качестве насадки нашли фарфоровые бусинки седловидной формы, разнообразные металлические спирали и др. Очень важно обеспечить идеальное смачивание поверхности колонны и насадки, которое иногда нарушается за счет проникновения в колонну силиконовой смазки из шлифов. При необходимости колонну ополаскивают смачивающим составом или сильно разбавленным раствором плавиковой кислоты, а шлифы смазывают порошком сульфида молибдена. [c.129]

    Распространен электролиз с применением растворимых (а к т и в н ы х) а н о д о в, подвергающихся окислению. Во внешнюю цепь посылает электроны сам анод, при этом смещается равновесие между электродом и раствором. Применение активных анодов позволяет провод[1ть электролитическую очистку (рафинирование) металлов. Подлежащий рафинированию исходный (черновой) металл используется в качестве анода, а на катоде (материал катода служит подложкой ) осаждается чистый (рафинированный) металл. Так, при рафинировании меди в качестве анода берут исходную (черновую) медь, проводят электролиз нейтрального водного раствора СнЗОа. На катоде разряжаются ионы и выделяется медь, так как стандартный потенциал меди си/сиг+=+0,34 В значительно превышает потенциал процесса восстановления молекул Н О ( °—0,83 В)  [c.165]

    В связи с тем, что токи в электролизных установках н габариты установок велики, система токоподводов весьма разветвлена, с большим количеством контактов. На рис. 7.5 показана схема ошиновки ванны для электролиза алюминия. Как видно, она весьма сложна, предусматривает двусторонний подвод тока мощными шинными пакетами и применение гибких компенсаторов теплового расширения. Кроме того, на случай необходимости отключения ванн при ремонте предусматриваются перемычки, соединяющие катодные пакеты двух соседних ванн, тем самым одна из них шунтируется. В качестве материала для шииопроводов применяют алюминий и медь, реже железо. Экономическая плотность тока при электролизе составляет для аюминиевых шин 0,3—0,4, для медных 1,0—1,3, для шип из стали и чугуна 0,15—0,2 А/мм2. [c.338]

    Все это свидетельствует о необходимости широкого внедрения никель-мед-ного сплава — монеля в качестве материала для труб и облицовки корпусов конденсаторов, соприкасающихся с содержащими соляную кислоту и сероводород средами (например, нестабильный бензин), т. е. в условиях, в которых легированные мышьяком латуни ЛА-77-2 и ЛО-70-1 обнаруживают недостаточную стойкость. Применение моиеля позволит увеличить срок службы оборудования и длительность межремонтных периодов в несколько раз. [c.163]

    Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам. [c.198]

    В случае гетерогенного катализа в присутствии меди [134, 168—170] наблюдается тот же интересный максимум скорости при росте pH, как и при катализе в присутствии железа. Эту характеристику меди весьма четко описали Радел и Хэринг [146] и Шпитальский, Петин и Коновалова [171]. Так, при добавке 0,4 мг/л иона двухвалентной меди к 309о-ной нерекиси водорода последняя оставалась бесцветной при pH ниже 3,8, но приобретала травянистозеленую окраску при pH выше 4,4. При промежуточных pH возникала желтая муть из-за образования гидрата окиси меди Си(ОН). , причем именно в этом интервале и проявлялась максимальная скорость разложения. Сама металлическая медь не обладает особенной активностью, хотя все же эта активность настолько велика, что исключает возможность применения меди в качестве аппаратостроительного материала для использования при работах с перекисью водорода. [c.403]

    Стальной катод подвергается заметной коррозии при остановках электролизера и проведении работ по его перемонтажу. При частых остановках возможны металлизация диафрагмы и ухудшение работы электролизера из-за коррозии катода и последующего восстановления образующихся при этом продуктов коррозии. Коррозия катода особенно заметна при применении стальных сетчатых катодов. После 3—5 лет работы диаметр проволок сетки заметно уменьшается вследствие коррозии, что вызывает необходимость замены катодной сетки новой. В связи с этим обстоятельством, а также со стремлением улучшить распределение тока на поверхности катода без значительных потерь на преодоление его омического сопротивления в электролизерах некоторых конструкций в качестве катодного материала применяют медь. Так, в электролизерах типа Харгривса—Берда в качестве катодного материала применялась медная сетка из проволоки диаметром 2,5 мм. Дополнительным обстоятельством, исходя из которого конструктор использовал медь в качестве катода, явилась карбонизация электролитической щелочи, применявшаяся в электролизере этого типа. В среде Oj стальной катод подвергался бы коррозии в значительно большей степени, чем медный. [c.141]

    В последнее время большое внимание уделяется новому виду синтетических смол — полифениленоксиду [19, с. ПО 28], в особенности поли-2,6-диметилфениленоксиду (поли-,2,6-ксилиленокси-ду), который лишен многих недостатков вышеописанных смол. Эту смолу получают конденсацией 2,6-ксиленола или его смеси с о-кре-золом в присутствии солей меди и третичного амина (чаще всего пиридина) при комнатной температуре. Полифениленоксид — термопластичный материал, который может применяться в широком диапазоне рабочих температур (от минусовых до 240 °С). Он отличается хорошими диэлектрическими характеристиками и устойчивостью к действию кислот, щелочей, перегретого пара. Получение полифениленоксида высокого молекулярного веса и хорошего качества возможно только при использовании 9 --Зу7о-ного 2,6-ксИ ленола, по возможности свободного от. ад-крезола. Примеси послед-вего уменьшают стабильность полимера и усложняют получение неокрашенного продукта. Полифениленоксид найдет широкое применение в электротехнике и радиотехнике, в производстве медицинского оборудования, различных бытовых приборов и изделий. Согласно прогнозам [27], производство этого полимера в США достигнет в семидесятые годы 45 тыс. т/год. [c.68]

    Исходя из этого нового представления о природе точек обра-разовапия пузырьков и взаимосвязи пузырчатого кипения оо значениями коэффициента теплоотдачи при кипении, была создаиа шероховатая поверхность, обработанная механически таким образом, чтобы на ней имелось большое число центров — зародышей пузырьков. Экспериментальные работы с этой поверхностью подтвердили наличие большого числа стабильных точек образования пузырьков и, как и предполагалось, пузырчатое кипение начиналось при меньшей разности температур. Коэффициент теплоотдачи при этом возрос в 2—3 раза по сравнению с коэффициентом теплоотдачи для гладких поверхностей. С целью дальнейшей интенсификации процесса теплообмена на поверхность было нанесено то нкое пористое металлическое покрытие. В качестве материала покрытия первоначально был применен никель, а яатем пористая медь. [c.152]

    Например, адипрен L (фирма Дюпон ) представляет собой линейный полимер с концевой изоцианатной группой, содержащий около 4% реакци-онпоспособного изоцианата [73]. Его получают из политетраметиленового эфира гликоля и толуолдиизоцианата. В отсутствие влаги этот продукт стабилен. Он имеет светло-желтую окраску и консистенцию меда. Взаимодействием концевых изоцианатных групп практически с любыми соединениями, содержащими два или больше активных водородных атома, его можно превратить в твердый эластомер. Как показал опыт, оптимальное сочетание свойств достигается при применении ароматических диаминов в качестве структурирующего агента. В литературе рассматриваются [111] свойства эластомеров типа адипрен в качестве конструкционного материала. [c.209]

    Цинк является значительно более электроотрицательным металлом, чем железо и ряд других конструкционных металлов. Равновесный потенциал цинка равен — 0,76 в, стационарный потенциал в 0,5 N Na l —около — 0,83 в. Вследствие этого, а также других своих положительных свойств цинк очень часто применяется в качестве материала для покрытий главным образом стали, а также иногда для алюминиевых сплавов, давая так называемые анодные покрытия, защищающие железо не только чисто механически (экранирование), но также и электрохимическим (протекторным) воздействием. Цинк и его сплавы широко применяются также для изготовления протекторов. Много цинка идет в сплавы, главным образом с медью (латуни). Сплавы на цинковой основе находят ограничен ное применение. [c.560]

    Значительно более обширно применение алюминия в виде раз-личных сплавов, наряду с хорошими механическими качествами характеризующихся своей легкостью. Особенно важен так называемый дуралюминий—сплав алюминия с медью (до 5%), магнием (до 2%) и марганцем (до 1%). Он ценен тем, что при равной прочности изделия из него почти в три раза легче стальных. Не говоря уже об авиационной промышленности, для которой легкость материала особенно важна, облегчение металлических конструкций имеет громадное значение для ряда областей техники. Это становится особенно наглядным, если принять во внимание, что, например, в груженом товарном вагоне около трети всей массы приходится на материалы, из которых изготовлен сам вагон, а в пассажирских вагонах иа их собственную массу падает до 90% всей нагрузки. Очевидно, что даже частичная замена стали дуралюминием дает громадный технико-экономический эффект. В связи с этим, а также ввиду наличия в природе практически неисчерпаемых запасов алюминия, его иногда называют металлом будущего . Возможность широкой частичной замены им основного металла современной техники — железа — ограничивается главным образом сравнительно высокой стоимостью алюминия. [c.351]

    По уменьшению эффективной работы пары неравномерной аэрации металлы располагаются в ряд цинк, хром, углеродистая сталь, серый чугун, кадмий, алюминий, медь, свинец, нержавеющая высокохромистая стапь, висмут, цирконий, тантал, титан. Из приведенного перечня следует, что весьма перспективный конструкционный материал для подземных сооружений - это титан, который, помимо высоких механических свойств, малой плотности, обладает также хорошими коррозионными характеристиками высокой общей коррозионной стойкостью и высокой устойчивостью к иону хлора, а также низкой чувствительностью к образованию пар дифференциальной аэрации. Из приведенных данных можно также сделать предположение о целесообразности применения циркония в качестве защитного покрытия на стальных изделиях в почвенных условиях. [c.48]

    В обзорных работах [II рассмотрены общие вопросы по синтезу" нитрилов. Как классические реакции обмена алкилгалогенида с цианистым натрием, так и реакции обмена между арилгалогенидами и цианидом одновалентной меди были значительно усовершенствованы путем применения апротонных растворителей (разд. А.1). Эти методы, наряду с дегидратацией амидов (разд. В.1) и оксимов-(разд. В.4), до сих пор остаются наиболее общими и надежными, путями получения нитрилов. Относительно новым методом, особенно полезным для получения низкокипящих нитрилов (разд. В.5), является реакция обмена между нитрилом и карбоновой кислотой. Реакции присоединения, вероятно, следует прежде всего рассматривать как метод получения цианидных групп, связанных с третичным атомом углерода (разд. Г). Большая часть других методов не имеет такого общего характера. Однако они могут быть подходящими и даже незаменимыми при получении какого-либо конкретного нитрила из единственно доступного исходного соединения. Например, а гипотетическом случае, при необходимости получить адаман-тилцианид, имея в качестве исходного материала только адамантан, можно было бы провести галогенирование с последующим обменом с цианидом, либо прямое цианилирование нли карбоксилирование с последующим амидированием и дегидратацией (разд. В.1). [c.431]

    Основными ценными качествами кера.мики, использующимися во всех областях ее применения, являются хи. ю- и теплостойкость. Поскольку большинство керамических. материалов состоит из оксидов металлов, дальнейшее окисление (при горении или других химических реакциях), как правило, невозможно. Прочность связей между атомами в кера.мических материалах огфеделяет также их высокие температуру плавления, твердость и жесткость. Однако, природа этих же связей оп-реде.тает и решающий недостаток кера. шки - ее хрупкость. Прочность связей препятствует скольжению атомных слоев относительно друг друга, и. материал теряет деформируемость (имеющуюся у пластичных материалов типа меди), а с ней и способность противостоять прилагае-. юй нафузке. Другое следствие хрупкости керамики состоит в том, что вьщерживаемые ею сжимающие нафузки существенно превосходят допустимые нафузки на растяжение и сдвиг. Под действием нафузки хрупкий материл легко трескается и разрушается, поэтому керамические материалы чрезвычайно чувствительны к малейшим нарушения.м микроструктуры, которые становятся источниками зарождения трещин. [c.53]

    Потенциальным потребителем сернистого нефтяного кокса является производство никеля и меди из руд окислительно-сульфи-днрующим методом, где углеродистый материал применяется в качестве восстановителя. В этом случае необходим сернистый кокс (содержание серы не менее 3%) крупнокускойой или брикеты из мелочи. Исследования по применению сернистого кокса в производстве никеля проводятся в Промышленном масштабе институтом металлургии Уральского филиала АН СССР совместно с Уфимским нефтяным институтом. Необходимый объем производства сернистого кокса для этих целей может быть установлен после окончания испытаний и решения проблемы получения и применения брикетов из нефтяного кокса. [c.9]

    Применение. Алмазы применяют для сверления, резки, огранки и шлифовки особо твердых материалов при бурении горных пород для изготовления деталей приборов и инструментов, фильтров и абразивных материалов в ювелирном деле. Графит употребляют в производстве огнеупоров, электротехнических изделий и материалов в химическом машиностроении в качестве конструкционного материала как компонент смазочных и антифрикционных составов для производства карандашей и красок для предупреждения образования накипи на стенках котлов. Из искусственного кускового графита и пирографита изготовляют сопла ракетных двигателей, камеры сгорания, носовые конусы и некоторые детали ракет блоки иэ особо чистого искусственного графита используют в ядерной технике как замедлители нейтронов. Уголь является топливом, применяется в черной и цветной металлургии (в производстве алюминия, при рафинировании меди и др.), а также в производстве сероуглерода, активного угля, электроугольных изделий, для получения жидких каменноугольных продуктов и, путем подземной газификации, газообразпого топлива. Технический является ингредиентом резин и пластмасс, основным черным пигментом для печатных и малярных красок используется при изготовлении линолеума, клеенки, кирзы, галантерейных материалов, лент для пишущих машинок, копировальной бумаги и др. входит в некоторые полировочные составы как теплоизоляционный материал в дорожном строительстведобавка [c.293]


Смотреть страницы где упоминается термин Медь применение в качестве материала для: [c.123]    [c.300]    [c.183]    [c.76]    [c.428]    [c.147]    [c.71]    [c.316]    [c.32]    [c.32]    [c.63]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Качество материала



© 2024 chem21.info Реклама на сайте