Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лейцин печени

    Иной путь окислительного распада наблюдается для таких аминокислот как лейцин, изолейцин, фенилаланин, тирозин и триптофан. При окислении в печени лейцина и изолейцина, начинающемся также с окислительного дезаминирования, образуется ацетоуксусная кислота. Фенилаланин окислйется вначале в тирозин, который далее подвергается своеобразному окислительному распаду также с образованием ацетоуксусной кислоты или аланина и ацетоуксусной кислоты. Приводим путь окислительного распада некоторых аминокислот. Обмен этих аминокислот может "быть связан как с реакциями цикла трикарбоновых кислот, так и с обменом жиров ( через ацетоуксусную кислоту). Схемы приведены на стр. 193, 196, 197. [c.194]


    Катаболизм аминокислот с разветвленной цепью лейцина, изолейцина и валина—преимущественно осуществляется не в печени (место распада большинства остальных аминокислот), а в мышечной и жировой тканях, в почках и ткани мозга. Сначала все три аминокислоты подвергаются трансаминированию с а-кетоглутаратом под действием одного общего и специфического фермента—аминотрансферазы аминокислот с разветвленной цепью (КФ 2.6.1.42) (не содержится в печени) с образованием соответствующих а-кетокислот. Последующее окислительное декарбоксилирование а-кетокислот приводит к образованию ацил-КоА-производных. [c.459]

    Цистинурия. Цистинурия представляет собой нарушение в обмене аминокислот, содержащих серу. Цистинурия встречается гораздо чаще, чем описанные выше аномалии аминокислотного обмена. Она проявляется в увеличенном выделении цистина с мочой если нормально с мочой выделяется мало цистина (1—85 мг в сутки), то при цистинурии количество выделяемого цистина резко возрастает (до 400—1000 мг в сутки). Вследствие плохой растворимости цистин выпадает в моче в виде кристаллических или аморфных осадков, из которых в почечных лоханках и мочевыводящих путях образуются цистиновые камни, достигающие иногда большого веса (50 г). Однако отложения цистина наблюдаются не только в почках, но и в других органах (например, в стенке кишечника, печени, селезенке и лимфатических узлах). Это означает, что цистинурия не является нарушением, связанным только с почками. В наиболее тяжелых случаях цистинурии в моче появляются значительные количества других аминокислот (например, лизина, триптофана, лейцина, тирозина) и даже диаминов (путресцина и кадаверина, стр. 319). Все это указывает на глубокое нарушение аминокислотного обмена в целом. [c.372]

    Применение. Витамин 8,2 применяют при лечении злокачественной анемии, цирроза печени, при нервных и психических расстройствах. Он широко используется в кормопроизводстве. В настоящее время большинство комбикормов для свиней и птиц обогащают витамином В а, особенно благоприятное действие на животных оказывает сочетание витамина с малыми дозами антибиотиков, в частности, биомицина. Витамин В]з воздействует на кроветворную функцию и на обмен белков, принимает участие в регуляции оптимального содержания в организме животного метионина, валина, треонина, лейцина, изолейцина. [c.46]

    Эти аминокислоты служат предшественниками глюкозы крови или гликогена печени, потому что они могут превращаться в пируват или в промежуточные продукты цикла лимонной кислоты. Они объединены здесь в группы в зависимости от места их вхождения в цикл. Совершенно не способен поставлять углерод для реального синтеза глюкозы один только лейцин. [c.608]


    Многим ученым (Грин и др.) удалось выделить из печени и почек крыс фермент, дегидрирующий около 12 известных Ь-аминокислот (лейцин, валин, метионин, пролин, аланин, цистин, гистидин, фенилаланин, тирозин, триптофан и др.). [c.331]

    На основании главным образом опытов с отложением гликогена в печени при голодании пришли к заключению, что из незаменимых аминокислот лизин, метионин и лейцин не обладают способностью превращаться в углеводы в животном организме. [c.380]

    Из лейцина и фенилаланина, например, образуются кетоновые тела при пропускании этих аминокислот через изолированную печень. Выяснилось, таким образом, что некоторые аминокислоты, так же как и жирные кислоты, являются кетогенными веществами, т. е. веществами, вызывающими образование кетоновых тел в печени. [c.317]

    При некоторых условиях изолейцин обладает кетогенными свойствами, при других условиях он превращается в углеводы [434—436]. Кун и сотрудники [421, 423, 437—439] в своих исследованиях установили, что в срезах печени при распаде лейцина образуются как двухуглеродные, так и трехуглеродные фраг- [c.362]

    Организм человека ограничен в своих возможностях превращать одну аминокислоту в другую. Превращение происходит в печени с помощью процессов транс-аминирования. Посредством трансаминаз аминогруппы переносятся с одной молекулы на другую. В то же время существуют аминокислоты, синтез которых в организме невозможен, и они должны быть получены с пищей это так называемые незаменимые аминокислоты лейцин, изолейцин, лизин, метионин, фенилаланин, треонин, триптофан, валин (для роста детей незаменимой аминокислотой является также гистидин). Только при поступлении таких аминокислот возможно со-.хранить азотистое равновесие. [c.7]

Рис. 8.9. Распределение радиоактивного ферритина, выделенного из печени крыс, по градиенту плотности сахарозы, через различные промежутки времени после инъекции 5 мкК лейцина- С на 100 г веса тела. Рис. 8.9. <a href="/info/860393">Распределение радиоактивного</a> ферритина, выделенного из <a href="/info/91112">печени крыс</a>, по <a href="/info/574216">градиенту плотности сахарозы</a>, <a href="/info/199490">через различные</a> промежутки времени после инъекции 5 мкК лейцина- С на 100 г веса тела.
    Кормление разными аминокислотами, меченными тяжелым азотом, показало, что они неодинаково ведут себя в организме. Тирозин дает больше всего в белках печени и меньше — в белках плазмы. Обратное соотношение наблюдалось для лейцина, причем в белках печени за семь дней половина его заменялась меченым. Особенно подробно изучалась судьба глицина в теле. В печени введенный меченый глицин быстро обменивается с ранее содержавшемся в ней глицином других тканей. В печени крыс такое обновление глицина достигает 10% в день. [c.320]

    После добавления в пищу крысам /-лейцина или глицина с в аминогруппе [1398] тяжелый азот через короткое время появлялся во всех изученных аминокислотах (кроме лизина при питании лейцином). Позже эти процессы изучались более подробно. Крысе давали с пищей меченый глицин в течение 3 дней, после чего введение его прекращалось и наблюдалось изменение содержания N в разных аминокислотах [1399]. Большие количества его были в аминокислотах печени, где содержание его медленно падало после прекращения поступления с пищей. В аминокислоты мускулов, кожи и соединительной ткани входило меньше N , но в течение нескольких дней после прекращения питания меченым глицином содержание в них [c.490]

    Следующие примеры дают представление о скорости аминокислотного обмена. Из опытов по кормлению крыс меченым лейцином было найдено [1399], что 50% белков печени взрослого животного обновляется за 7 дней. Опыты с меченым глицином дали ту же величину обмена за 6—7 дней в печени и за 17 дней во всем теле. У человека время обновления белков на 50% равно 80 дням во всем организме, 10 дням в печени и плазме и 160 дням в мускулах, коже, мозге, костях и легочной ткани [1399]. При внутривенном введении собаке метионина, меченного 5 , радиоактивная сера уже через несколько часов появлялась в белках разных тканей, даже если у собаки была удалена печень [1407]. При таком же введении мыши глицина, меченного С , через несколько минут значительная радиоактивность обнаруживалась в печени и в циркуляции оставалось ее менее 3%. Из печени С также быстро уходит В ней круговорот радиоактивной аминокислоты составляет 50% за 1 час [1403]. [c.491]

    Введенный с пищей тирозин непосредственно и быстро используется для построения белковой молекулы. Помимо этого он отдает свою аминогруппу (до 25%) для образо- вания других аминокислот из а-кетокислот, находящихся в организме. Опыты с кормлением животных меченым тирозином и лейцином показали существование индивидуального отношения органов и тканей к отдельным аминокислотам в процессе обмена. Так, например, при введении крысам меченого тирозина наибольшее количество его азота оказалось В белках, печени, при введении же лейцина—в белках кровяной сыворотки. [c.308]


    Одним из важнейших результатов применения меченых атомов к изучению живых организмов было, как уже указывалось, открытие высокой динамичности процессов распада и ресинтеза жиров, углеводов и белков, ведуш,их к быстрому их обновлению в тканях и органах. В работах Шенгеймера [1061 и других биохимиков это было наглядно показано для жиров и углеводов путем применения дейтерия и изотопов углерода, а для белков, главным образом, путем применения тяжелого азота, радиоактивных изотопов фосфора и серы. При введении в пищу жирных кислот, меченных дейтерием в радикале, этот дейтерий быстро появляется в жирах всех органов и, прежде всего, в жировых запасах, откуда он переходит в другие места. Средняя продолжительность пребывания каждого атома меченого водорода в теле позвоночных близка к двум неделям. При кормлении крыс гидролизатом казеина, содержавшим дейтерий, было установлено, что за три дня обновляется 10% протеинов печени и 25% протеинов мускулов. При кормлении казеином с цитратом аммония, меченным тяжелым азотом, последний через несколько дней был обнаружен почти во всех аминокислотах тела (но не в несинтезирующемся в нем лизине), в креатине мышц, гиппуровой кислоте мочи и проч. Если животное имело бедную белками пищу, то оно усваивало около половины вводимого азота. При нормальной диете, когда животное находилось в состоянии азотного равновесия, усвоение азота уменьшалось, но качественная картина оставалась той же. Столь же быстрое усвоение и распределение азота в организме наблюдается при кормлении глицином, лейцином, тирозином и другими аминокислотами, меченными тяжелым азотом. Азот из пищи особенно быстро усваивается в виде синтезируемых глютаминовой и аспарагиновой кислот. Это, очевидно, связано с быстрым течением открытых А. Е. Браунштейном и М. Г. Крицман реакций энзиматического переаминирования этих кислот с а-кетокислотами, а также с их исключительной ролью в общем обмене аминокислот и протеинов [11]. [c.496]

    Аминокислоты как источники ацетил-КоА. Реакции превращения свободных аминокислот (тирозина, фенилаланина, лейцина, лизина, триптофана и др.), ведущие к образованию ацетил-КоА, у взрослых животных наиболее интенсивно протекают в печени и почках где они могут эффективно пополнять пул [c.169]

    При дезаминировании аспарагиновой кислоты, аланина и глутаминовой кислоты образуются а-кетокислоты, принадлежащие к числу промежуточных продуктов обмена углеводов. Введение per os этих аминокислот, а также валина [97, 98], серина [99, 100], глицина [99, 101], треонина [102], аргинина [103, 104],. гистидина [104—106] и изолейцина [104, 107] вызывает у голодающих животных увеличение содержания гликогена в печени. В определенных условиях пролин [104], цистеин [104] и метионин [108] также могут вызывать добавочное образование у леводов, тогда как в результате обмена тирозина (стр. 417), фенилаланина (стр. 425) и лейцина (стр. 359) образуютсл кетоновые тела. Недостаток этих экспериментальных приемов состоит в том, что получаемые результаты касаются обмена аминокислот в нефизиологических условиях не удивительно, что некоторые аминокислоты проявляют при одних условиях гликогене-тическое действие, а при других — кетогенное. Для изучения превращения аминокислот в процессах обмена веществ наиболее удобно вводить изотопную метку в углеродный остов аминокислоты и затем выяснить судьбу меченого углерода путем исследования продуктов обмена. Работы этого рода, относящиеся к отдельным аминокислотам, подробно рассмотрены в гл. IV. [c.181]

    Амина кислоты как источники ацетил-КоА. Реакции превращения свободных аминокислот (тирозина, фенилаланина, лейцина, лизина, триптофана и др.), ведущие к образованию ацетил-КоА, у взрослых животных наиболее интенсивно протекают в печени и почках, где они могут эффективно пополнять пул этого метаболита. В головном мозгу роль такого пути образования ацетил-КоА весьма незначительна. [c.54]

    Для изучения белкового синтеза крысам вводили внутривенно С -лейцин и С -вапин (аминокислоты, участие которых в реакциях, не связанных с белковым синтезом, незначительно). Затем через различные, но короткие интервалы времени извлекали печень и приготовляли взвеси микросом. Оказалось, что белок рибосом, нерастворимых в дезоксихолате, очень быстро (меньше чем за 5 мин), интенсивно включает метку, после чего его радиоактивность резко падает (фиг. 90). Вместе с тем включение метки в белок микросом, растворимый в дезоксихолате, протекает значительно слабее и продолжается по меньшей мере 20 мин. [c.265]

Фиг. 90. Включение in -vivo небольших доз С -лейцина в два компонента микросом и в растворимый белок клеток печени. Фиг. 90. Включение in -vivo небольших доз С -лейцина в два компонента микросом и в <a href="/info/382047">растворимый белок</a> клеток печени.
    Все исследованные рибонуклеиновые кислоты из бактериальных, растительных и животных тканей содержат несколько минорных оснований. Однако количественное распределение их в рибонуклеиновых кислотах из различных источников неодинаково, и во фракциях нуклеиновых кислот из данного типа клеток (табл. 6-3) действительно имеются значительные вариации. Так, например, дрожжевые рибонуклеиновые кислоты, растворимые в молярном растворе хлористого натрия, содержат значительно больше псевдоуридина, чем те рибонуклеиновые кислоты, которые нерастворимы в таком растворе [261]. Точнее, этот компонент концентрируется в так называемой растворимой , или транспортной , рибонуклеиновой кислоте клетки (хотя он в значительных количествах присутствует, вероятно, и в высокомолекулярной рибосомальной РНК), и его содержание, по-видимому, прямо пропорционально способности рибонуклеиновой кислоты акцептировать аминокислоты наиболее активная (по включению лейцина) из выделенных до сих пор рибонуклеиновых кислот содержит около 5,6 мол.% превдоуридина [250, 264—267]. По сравнению с высокомолекулярной рибосомальной РНК растворимые цитоплазматические фракции клеточной рибонуклеиновой кислоты содержат метилированные основания также в значительно больших количествах [251, 268, 269]. В растворимых рибонуклеиновых кислотах из опухолевой ткани по сравнению с таковыми из клеток печени тоже было обнаружено заметное увеличение содержания метилированных пуринов (особенно 2-метил-амино-6-оксипурина) [269]. [c.411]

    В первых опытах на целом организме было показано, что включение меченых аминокислот в белки происходит раньше всего в рибосомной фракции цитоплазмы. Так, Келлер обнаружил через 15 мин. после введения меченного С лейцина в организм крысы до 70% радиоактивности в рибосомной фракции (изучались белкп печени). Соотношение между удельной активностью белков в рибосомах и в других частях клетки составляло 5—10. Множество других экспериментов подтвердило, что напболее интенсивный синтез белка локализован в мельчайших частицах цитоплазмы, рибосомах, содержащих большую часть клеточной РНК. [c.441]

    Превращение орнитина в аргинин было окончательно доказано при помощи дейтерия и После того как мышам давали с пищей орнитин с дейтерием в а-положении, последний появлялся в аргинине из тканей [1427]. Орнитин с N H2 в а- или а-положеиии вводился в пищу крысам, после чего появлялся в тех же положениях в аргинине [1427]. Это показывает, что основная цепочка орнитина Ат(СН2)зЫН2— входит в аргинин, не разрушаясь. Амидиновая группа аргинина происходит из аммония или аминокислот пищи. При кормлении крыс меченым или разными -аминокислотами (глицином, лизином, лейцином, аргинином и др.) в аргинине, тканей оказывается в NHj-rpynne. Соизмеримые количества появляются в мочевине из мочи, что подтверждает ее образование из аргинина [1400, 1428). В дальнейшем почти весь меченый азот аргинина выводится с мочевиной. В опытах со срезами печени было подтверждено, что углерод из бикарбоната НСО или H Юg переходит в карбонил мочевины [1430]. Таким образом, были подтверждены основные звенья орнитинового цикла и внесены в него дополнительные данные. [c.495]

    У белков семян (см. табл. 25) присутствие -больших количеств амидных групп (особенно в глиадине и зеине), повидимому, указывает на важную роль глутамина и аспарагина в азотистом обмене прорастающего семени. Можно предположить, что в начале прорастания ферментативная система, ответственная за выработку этих амидов — аспарагина и глутамина,—либо отсутствует, либо не очень активна. Интересно отметить наблюдавшийся [766] факт понижения проницаемости некоторых клеточных оболочек для двухвалентных ионов по сравнению с проницаемостью для одновалентных амидов. Значительные вариации в составе гистонов печени и тимуса (аланин, глицин, валин, лейцин, изолейцин, треонин и глутаминовая кислота) не позволяют оценить те различия, которые обнаруживаются при сравнении аминокислотного состава этих гистонов с гистоном саркомы. Во многих отношениях гистон саркомы обнаруживает большое сходство с аминокислотным составом нор1мальных гистонов в частности, это справедливо по отношению к содержанию изолейцина в гистоне тимуса теленка и саркомы крысы. Из всех белков (40 или более), сгруппированных в табл. 14—25, только два содержат более 10%, а 32 — меньше чем 5% изолейцина. С другой стороны, в гистонах тимуса и саркомы содержится 20,5 и 17,9% изолейцина соответственно. [c.231]

    Образование кетоновых тел. Две молекулы ацетил-КоА взаимодействуют между собой, в результате чего образуется ацетоацетил-КоА (рис. 75). Далее ацетоацетил-КоА может взаимодействовать с третьей молекулой ацетил-КоА с образованием промежуточного соединения 3-гид-рокси-З-метилглутарил-КоА (ГМГ). Последний может образовываться при распаде аминокислот, например лейцина, и в процессе биосинтеза холестерина. ГМГ-КоА-синтетаза находится в основном в клетках печени, поэтому синтез кетоновых тел происходит только в этом органе. Затем под влиянием фермента ГМГ-КоА-лиазы ГМГ-КоА распадается с образованием первого кетонового тела — ацетоуксусной кислоты, которая может превращаться в 3-гидроксимасляную кислоту или спонтанно декарбоксилиро-ваться, превращаясь в ацетон. [c.200]

    Холестерин синтезируется в организме не только из уксусной кислоты, но и из веществ, из которых она образуется. Оказалось, что в срезах печени ацетоуксусная кислота используется для синтеза холестерина с большей скоростью, чем уксусная кислота. Отсюда можно заключить, что ацетоуксусная кислота используется для синтеза холестерина, не подвергаясь распаду с образованием уксусной кислоты. Было установлено, что холестерин синтезируется из изопропиловых углеродов изовалериановой кислоты, возникающей как продукт превращения лейцина  [c.326]

    Превращение лейцина с образованием кетоновых соединений можно также наблюдать в опытах со срезами печени. Подобные опыты показали, что из каждой молекулы лейцина образуются 1,5 молекулы ацетоуксусной кислоты. Если учесть, что молекула лейцина содержит шесть атомов углерода, а молекула ацетоуксусной кислоты — четыре атома, можно заключить, что при известных условиях весь углерод лейцина используется для образования ацетоуксусной кислоты. Опыты с применением меченного в -положении молекулы лейцина показали, что при введении его в организм голодным флоридзиновым крысам, выделяющаяся ацетоуксусная кислота оказывается, как и следовало ожидать, радиоактивной. При этом в равной мере обнаруживается в метильной и в метиленовой группах ацетоуксусной кислоты. Эти данные позволяют сделать безошибочны вывод, что два атома углерода молекулы лейцина, находящиеся в а- и 3-положении, используются для синтеза ацетоуксусной кислоты. Один фрагмент молекулы лейцина дает начало ацетоуксусной кислоте, другой — уксусно кислоте, из двух молекул которой синтезируется ацетоуксусная кислота. Путь превращения -лейцина в организме следующий  [c.371]

    Среди аминокислот, поглощаемых мозгом, преобладает валин. Способность мозга крысы окислять аминокислоты с разветвленной боковой цепью (лейцин, изолейцин и валин) по меньшей мере в 4 раза превышает соответствующую способность мышц и печени. Хотя в постабсорбтивном состоянии значительные количества этих аминокислот освобождаются из мышечной ткани, они не поглощаются печенью, и можно полагать, что главным местом их утилизации является мозг. [c.311]

    Реакция 6Ь расщепление р-гндрокси-р-метилглу-тарил-СоА. Реакция, в ходе которой из Р-гидрок-си-р-метилглутарил-СоА образуются ацетил-СоА и ацетоацетат, протекает у млекопитающих в митохондриях клеток печени, почек и сердца. Этим процессом объясняется сильное кетогенное действие лейцина, поскольку на I моль лейцина наряду [c.338]

    Учитель И. Я Хасман Э. Л. Исследование включения С-лейцина в микросомальные фракции печени и селезенки [c.96]


Смотреть страницы где упоминается термин Лейцин печени: [c.41]    [c.142]    [c.52]    [c.179]    [c.223]    [c.360]    [c.288]    [c.319]    [c.178]    [c.132]    [c.291]   
Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.371 ]




ПОИСК





Смотрите так же термины и статьи:

Лейцин



© 2025 chem21.info Реклама на сайте