Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лейцин распад

    Иной путь окислительного распада наблюдается для таких аминокислот как лейцин, изолейцин, фенилаланин, тирозин и триптофан. При окислении в печени лейцина и изолейцина, начинающемся также с окислительного дезаминирования, образуется ацетоуксусная кислота. Фенилаланин окислйется вначале в тирозин, который далее подвергается своеобразному окислительному распаду также с образованием ацетоуксусной кислоты или аланина и ацетоуксусной кислоты. Приводим путь окислительного распада некоторых аминокислот. Обмен этих аминокислот может "быть связан как с реакциями цикла трикарбоновых кислот, так и с обменом жиров ( через ацетоуксусную кислоту). Схемы приведены на стр. 193, 196, 197. [c.194]


    Катаболизм аминокислот с разветвленной цепью лейцина, изолейцина и валина—преимущественно осуществляется не в печени (место распада большинства остальных аминокислот), а в мышечной и жировой тканях, в почках и ткани мозга. Сначала все три аминокислоты подвергаются трансаминированию с а-кетоглутаратом под действием одного общего и специфического фермента—аминотрансферазы аминокислот с разветвленной цепью (КФ 2.6.1.42) (не содержится в печени) с образованием соответствующих а-кетокислот. Последующее окислительное декарбоксилирование а-кетокислот приводит к образованию ацил-КоА-производных. [c.459]

Фиг. 122. Распад лейцина, изолейцина и валина. Фиг. 122. Распад лейцина, изолейцина и валина.
    Несмотря на то что в состав белков человеческого организма и вхог дят все аминокислоты, перечисленные в табл. 14.1, однако отнюдь не все они должны обязательно содержаться в пище. Экспериментально доказано, что для человека существенное значение имеют девять аминокислот. Такими незаменимыми аминокислотами являются гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин. Все остальные аминокислоты, которые называют зал1еныл1ьши аминокислотами, человеческий организм способен вырабатывать сам. Минимальные количества аминокислот, необходимые человеку в молодости, были установлены американским биохимиком У. Ч. Роузом. Ерли ежесуточное поступление в организм человека любой из восьми указанных аминокислот (за исключением гистидина) окажется ниже определенного уровня, то организм человека будет выделять больше соединений азота, нежели получать их с пищей белки в его организме станут распадаться быстрее, чем синтезироваться. Потребность молодых людей в аминокислотах колеблется в пределах двукратной дозы, например 0,4—0,8 г лизина в сутки. Минимальная потребность по Роузу представляет собой наибольшую величину для любого из наблюдаемых им лиц. Нет сомнений в том, что каждый человек отличается от другого своими генетическими особенностями, а следовательно, и своими биохимическими характеристиками. Данные, приведенные в табл. 14.2, вдвое превышают значения, установленные Роузом. Предположительно эти количества вполне достаточны для предотвращения нарушений белкового обмена для большинства людей (99%). Потребности женщин составляют приблизительно две трети от количеств, указанных для мужчин. [c.389]

Фиг. 139. Путь распада лейцина. Фиг. 139. <a href="/info/614488">Путь распада</a> лейцина.

    При распаде изолейцина р-окисление идет до конца обычным образом с образованием ацетил-СоА и пропионил-СоА. Однако в ходе катаболизма лейцина после дегидрирования, которым начинается р-окис-ление, происходит присоединение двуокиси углерода, осуществляемое биотинилферментом (гл. 8, разд. В). Двойная связь, сопряженная с карбонилом тиоэфира, придает этому карбоксилированию сходство со стандартной реакцией р-карбоксилирования. Зачем понадобился этот лишний СОг Метильная группа в Р-положении блокирует полное р-окисление, но при этом остается возможным альдольное расщепление, приводящее к образованию ацетил-СоА и ацетона. Дальнейший метаболизм ацетона сопряжен с определенными трудностями. В случае присоединения СОг продуктом оказывается ацетоацетат, катаболизм которого легко доводится до конца через его превращения в ацетил-СоА. [c.116]

    Пути распада валина, изолейцина и лейцина изучены в опытах с тканями млекопитающих. По-видимому, превращения этих аминокислот аналогичны все они подвергаются переаминированию с образованием соответствующих а-кетокислот и затем необратимому окислительному декарбоксилированию с превращением остатков скелета в соответствующие ацилпроизводные кофермента А. В ранних исследованиях было установлено, что при превращении лейцина и изовалерьяновой кислоты в организме млекопитающих образуются кетоновые тела [413—415]. Отдельные этапы превращения лейцина в ацетоуксусную кислоту были выяснены при помощи изотопных методов и в последнее время — в исследованиях с ферментами. В опытах с изотопным углеродом установлено, что атомы С-1 и С-2 изовалерьяновой кислоты, соответствующие а- и р-углеродным атомам молекулы лейцина, дают начало двухуглеродным остаткам, которые могут конденсироваться с образованием ацетоуксусной кислоты [416—419]. Углеродные атомы метильных групп изо-пропильного остатка становятся углеродными атомами метильной и метиленовой групп ацетоуксусной кислоты. -у-Углеродный атом молекулы лейцина (или атом С-3 изовалерьяновой кислоты) переходит в карбонильный углерод ацетоуксусной кислоты. При этих исследованиях было доказано также включение СОг в карбоксильную группу ацетоуксусной кислоты [418, 420]. Ферментативные опыты Куна и сотрудников [421—423, 1102] привели к установлению представленных ниже промежуточных продуктов и реакций  [c.358]

    Для полного гидролиза белков можно использовать сильную кислоту, сильное основание или специфические катализаторы — протеолитические ферменты. Наиболее часто используется для этой цели сильная кислота. Обычная методика гидролиза состоит в кипячении белка с 6 н. НС1 в запаянной ампуле (из которой предварительно откачивают воздух) при 110° в течение 12—96 час. В этих условиях пептидные связи гидролизуются с количественным выходом (для полного освобождения валина, лейцина и изолейцина требуется сравнительно большое время) и в результате гидролиза образуются гидрохлориды аминокислот. При нагревании с минеральными кислотами триптофан полностью распадается, а оксиаминокислоты серин и треонин подвергаются частичному разрушению. Эти потери определенным образом учитываются. Рацемизации аминокислот при кислотном гидролизе не происходит. [c.57]

    Распад изолейцина, лейцина и валина изучен в тканях животных. По-видимому, он протекает так, как показано на фиг. 122. Наличие таких же превращений у растений подтверждается следующими данными. [c.429]

    Полевую десорбцию следует рассматривать как один из наиболее "мягких" методов ионизации. В общем случае метод позволяет получить ионы [М]" или [М + Н]", которые из-за пониженной внутренней энергии слабо распадаются. На рис. 2.8,6 приведен масс-спектр лейцина, полученный в условиях полевой десорбции. Интересно сравнить его вид с видом масс-спектров, зарегистрированных с помощью других методов ионизации (рис. 2.8,а и 2.5,а,б). [c.30]

    Высказывались также взгляды, что источником образования изопре-нового скелета могут быть аминокислоты—продукты распада белковых веществ, например лейцин  [c.156]

    Распад валина происходит путем цепи ферментативных реакций, сходных с реакциями, участвующими в обмене лейцина, однако конечные продукты превращений этих аминокислот различны. Уже давно известно, что валин служит источником образования гликогена [427—430]. Судя по данным опытов с исполь- [c.360]

    Для сравнения даны величины поверхностного натяжения кристаллоидных продуктов распада белка. Из данных этой таблицы видно, что белки приблизительно так же поверхностноактивны, как и кристаллоидные поверхностно-активные вещества (лейцин, гликоколь). Гуммиарабик 1 принадлежит неактивным веществам. [c.364]

    При некоторых условиях изолейцин обладает кетогенными свойствами, при других условиях он превращается в углеводы [434—436]. Кун и сотрудники [421, 423, 437—439] в своих исследованиях установили, что в срезах печени при распаде лейцина образуются как двухуглеродные, так и трехуглеродные фраг- [c.362]


    Вследствие относительной стабильности некоторых пептидных связей для осуществления полного гидролиза белков или пептидов до индивидуальных аминокислот требуются жесткие условия, такие, как нагревание в течение 70 ч с 6 н. НС1 в эвакуированной запаянной ампуле. В этих условиях триптофан почти полностью разлагается, причем скорость его распада увеличивается в присутствии углеводов и других карбонилсодержащих соединений [43]. В аналогичных условиях наблюдается некоторое разложение лейцина, аспарагиновой кислоты, пролииа, но этого можно избежать при добавлении фенилгидроксиламина [59]. Для полного гидролиза более стабильных пептидов, содержапщх, например, валин и изолейцин, необходимо увеличение времени гидролиза. При этом наблюдается значительная потеря других аминокислот, в частности цистина, серина и треонина [66, 132]. В тех случаях, когдалеобходимо измерить степень разложения отдельных аминокислот, постепенно увеличивают продолжительность гидролиза. Если время гидролиза химотринсиногена (5 и. HG1, 110° С, запаянная эвакуированная ампула) увеличивают с 24 до 72 ч, то количество определяемого пролина увеличивается на [c.391]

    На рис. 24.8 представлены пути окислительного распада аминокислот с разветвленной цепью — кетогенной аминокислоты лейцина, а также валина и изолейцина, являющихся одновременно кетогенными и гликогенными. В процессе метаболических превращений валина происходит образование сукцинил-КоА, который через цикл ТКК и при участии некоторых других ферментов может превратиться в пируват, а затем в глюкозу. В то же время лейцин дает непосредственно кетопродукт ацетоацетат и, кроме того, аце-тил-КоА, из которого также может образовываться ацетоацетат. Изолейцин дает ацетил-КоА и пропионил-КоА. Через метилмалонил-КоА пропи-онил-КоА превращается в сукцинил-КоА, и, следовательно, его надлежит считать гликогенным, а так как ацетил-КоА — кетогенное соединение, то изолейцин можно отнести одновременно к обеим категориям. [c.379]

    Лейцин распадается на ацетил-кофермент Л и ацетоацетил-кофермеит А [c.173]

    Описано свыше 50 случаев редкого аутосомно-рецессив-ного нарушения (открытого в 1954 г.), при котором моча больного и выдыхаемый им воздух имеют запах кленового сиропа . В моче обнаруживаются высокие концентрации а-кетокислот с разветвленной цепью, образующихся при переаминировании валина, лейцина и изолейцина. Характерный запах бывает обусловлен продуктами распада этих кислот. Биохимический дефект кроется в ферменте, катализирующем окислительное декарбоксилирование кетокислот, как указано на рис. 14-11. [c.116]

    Аминокислоты с разветвленной боковой цепью, валин, лейцин и изо лейцин, часто распадаются в организме следующим образом. Пере аминирование приводит к образованию а-кетокислоты, которая под вергается окислительному декарбоксилированию с 06pa30BaHnei ацил-СоА-производного. Последнее затем подвергается р-окисле нию. Какие продукты в этом случае образуются из изолейцина Каким образом они затем превращаются в СО2 Какие затрудненш могут встретиться при катаболизме валина и лейцина Попытай тесь предложить рациональную схему соответствующих ката боли ческих путей. Сравните свои предложения с реально установленны ми путями, приведенными на рис. 14-11. [c.357]

    Приведенными примерами, вероятнее всего, не ограничиваются биологические функции тиамина. В частности, ТПФ участвует в окислительном декарбоксилировании глиоксиловой кислоты и а-кетокислот, образующихся при распаде аминокислот с разветвленной боковой цепью в растениях ТПФ является эссенциальным кофактором при синтезе валина и лейцина в составе фермента ацетолактатсинтетазы. [c.222]

    При дезаминировании некоторых аминокислот (аланина, аспарагиновой, глутаминовой кислот) образуются а-кетокислоты (пировиноградная, а-кетоглутаровая, щавелевоуксусная), принадлежащие к числу промежуточных продуктов клеточного катаболизма. Больщинство же возникающих при этом органических кислот подвергается сначала предварительным превращениям, приводящим к появлению соединений, способных прямо включаться в основные катаболические пути клетки. Например, распад -лейцина в конечном итоге приводит к образованию ацетил-КоА — исходного субстрата ЦТК. Такова энергетическая сторона метаболизма бактерий-аммонификаторов. [c.402]

    В последние годы вьыснено, что время полужизни белков детерминировано природой его N-концевой аминокислоты. Если она легко соединяется с убиквитином — небольшим белком с молекулярной массой 8,5 kDa, состоящим из 74 аминокислотных остатков, то такой убиквитированный белок атакуется протеиназами и разрушается. Наиболее подвержены убиквитированию аргинин, лизин, аспарагиновая кислота, аспарагин, триптофан, лейцин, фенилаланин, гистидин, глутаминовая кислота, тирозин, глутамин, изолейцин менее подвержены — метионин, серин, аланин, треонин, валин, глицин, цистеин, их относят к стабилизирующим гидролитический распад белков. [c.369]

    Ф. Эйблсоном (1961 г.) приводится график зависимости скорости распада аланина от температуры, показывающий, что этот распад реален в условиях осадочной толщи. Исследования Дж. Валентайна (1964, 1968 гг.) показали, что распад аминокислот — аргинина, пролина, лейцина — происходит с соблюдением прямолинейной зависимости согласно уравнению Аррениуса (рис. 26). [c.176]

    Одним из важнейших результатов применения меченых атомов к изучению живых организмов было, как уже указывалось, открытие высокой динамичности процессов распада и ресинтеза жиров, углеводов и белков, ведуш,их к быстрому их обновлению в тканях и органах. В работах Шенгеймера [1061 и других биохимиков это было наглядно показано для жиров и углеводов путем применения дейтерия и изотопов углерода, а для белков, главным образом, путем применения тяжелого азота, радиоактивных изотопов фосфора и серы. При введении в пищу жирных кислот, меченных дейтерием в радикале, этот дейтерий быстро появляется в жирах всех органов и, прежде всего, в жировых запасах, откуда он переходит в другие места. Средняя продолжительность пребывания каждого атома меченого водорода в теле позвоночных близка к двум неделям. При кормлении крыс гидролизатом казеина, содержавшим дейтерий, было установлено, что за три дня обновляется 10% протеинов печени и 25% протеинов мускулов. При кормлении казеином с цитратом аммония, меченным тяжелым азотом, последний через несколько дней был обнаружен почти во всех аминокислотах тела (но не в несинтезирующемся в нем лизине), в креатине мышц, гиппуровой кислоте мочи и проч. Если животное имело бедную белками пищу, то оно усваивало около половины вводимого азота. При нормальной диете, когда животное находилось в состоянии азотного равновесия, усвоение азота уменьшалось, но качественная картина оставалась той же. Столь же быстрое усвоение и распределение азота в организме наблюдается при кормлении глицином, лейцином, тирозином и другими аминокислотами, меченными тяжелым азотом. Азот из пищи особенно быстро усваивается в виде синтезируемых глютаминовой и аспарагиновой кислот. Это, очевидно, связано с быстрым течением открытых А. Е. Браунштейном и М. Г. Крицман реакций энзиматического переаминирования этих кислот с а-кетокислотами, а также с их исключительной ролью в общем обмене аминокислот и протеинов [11]. [c.496]

    При Р-окислении жирных кислот с разветвленной цепью, имеющих четное или нечетное число углеродных атомов, в основном образуются изобутирил-Коа или изовалерил-КоА соответственно. Хотя показано, что митохондрии животных путем р-окисления превращают изокапроновую кислоту в изомасляную, значение этих реакций неясно, поскольку жирные кислоты с разветвленной цепью не встречаются в природе в сколько-нибудь значительных количествах. Вероятно, основным источником жирных кислот с разветвленной цепью служат реакции распада трех аминокислот с разветвленной цепью — изолейцина, валина и лейцина. [c.320]

    Дальнейшая судьба углеродного скелета у разных аминокислот различна. Лишь немногие продукты дезаминирования (пировиноградная, 2-оксоглутаровая, щавелевоуксусная кислоты) являются одновременно промежуточными продуктами центральных путей катаболизма. Другие углеродные скелеты через специальные катаболические пути вовлекаются в промежуточный обмен. Мы не ставили здесь задачу охарактеризовать все изйестные пути распада. В качестве типичного примера на рис. 14.15, представлен путь расщепления лейцина. Особого внимания заслуживает здесь З-гидрокси-З-метилглутарил-СоА-важный промежуточный продукт в синтезе стероидов и каротиноидов. [c.433]

    Образование метакрилил-кофермента А предполагается по аналогии с промежуточными реакциями распада лейцина. Опыты с ферментными препаратами свидетельствуют о возможности гидратирования этого соединения с образованием 3-окси-изобутирил-кофермента А. Изобутирильный остаток этого соединения, вероятно, превращается в пропионовую кислоту [432], [c.362]

    Хассан и Гринберг [450] исследовали превращения ОЬ-нор-лейцина и ОЬ-норвалина, меченных С , в организме крысы. Судя по выделению радиоактивной СО2, эти аминокислоты распадались довольно быстро, но в белки они, по-видимому, не включались. Гринберг [451] дает следующую схему катаболизма норвалина и норлейцина  [c.365]

    На фиг. 138—140 показаны пути окислительного распада валина, лейцина и изолейцина. Первые три этапа этих путей совпадают. Затем пути расходятся, но во всех случаях на более поздних этапах наблюдается отчетливое сходство с реакциями окисления жирных кислот. Отметим образование р-окси-Р-метилглутарил-SKoA при окислении лейцина. Это соединение — важный промежуточный продукт в синтезе холестерина и других стероидов из ацетил-SKo А (см. гл. XVI). [c.447]

    Молекулярные ионы тиагидантоинов, образующихся при взаимодействии аминокислот с фенилизотио цианатом, более стабильны. Интенсивность их пиков достигает 25— 80%. Максимальным в масс-спектрах этих соединений является обычно пик иона mie 135 ( eHj NS), а основные направления распада молекулярного иона связаны с элиминированием углеводородного остатка. Наиболее интенсивные фрагментные ионы, образующиеся при диссоциативной ионизации, например N-фенилтиогидантоина, полученного из лейцина, приведены на схеме [c.149]

    Из аминоизомасляной кислоты получены аммиак, ацетон и углекислый газ [113]. Лейцин образует смесь изовалерианового альдегида, изовалериановой и изомасляной кислот и ацетона [108, 112, 115], аспарагиновая кислота — смесь малоновой и муравьиной кислот [116], а глутаминовая кислота — смесь янтарной и уксусной кислот [117, 118]. В тех же условиях аргинин распадается на гуанидин и янтарную кислоту [117]  [c.335]

    На основании этих данных можно было бы заключить, что обновление молекул сывороточных белков происходит не в результате кратковременного размыкания пептидных цепей и подключения к месту разрыва новых аминокислот, а путем полного распада отдельных белковых молекул с последующим образованием новых белковых частичек. Если, однако, вместо N -глицинa подопытным кроликам вводился С -лейцин, то наблюдалось включение меченой аминокислоты в 51-антитела [60]. Эти последние опыты с а У(инокислотой, меченной изотопным углеродом, представляются более убедительными, чем опыты с аминокислотой, меченной изотопным азотом, так как меченый азот может отщепляться и обмениваться в результате процессов дезаминирования и переаминирования. Тем не менее трудно предположить, что белковые молекулы антител могут подвергаться непрерывному обновлению своего аминокислотного состава и в то же время сохранять в неизменном виде свои свойства антител. Эти свойства, вероятнее всего, обусловлены тем, что форма поверхности молекулы антитела геометрически дополняет форму детерминирующей группы антигена. Трудно себе представить, каким образом может сохраняться эта дополнительная форма, если молекулы антитела непрерывно обменивают входящие в их состав аминокислоты на аминокислоты окружающей среды. [c.391]

    Тенденция исследовать продукты начального неполного распада белковых веществ приводила к столь противоречивым результатам, что ни о какой их систематизации не могло быть и речи. Получаемые при таком гидролизе смеси высокомолекуляр-тых осколков были настолько неоднородны, что попытки разделить их не могли увенчаться успехом. Фищер (в соответствии со СВОИМИ представлениями о построении белков из низкомолекулярных веществ) полагал, что имеет смысл осуществить только полный гидролиз белков, но не столь глубокий, чтобы конечные продукты распада могли претерпевать какие-либо существенные изменения. Данные, свидетельствующие о том, что по крайней мере некоторые аминокислоты включаются в белки в оптически активном состоянии, позволили использовать сохранение оптически активных конечных продуктов в качестве критерия осторож-шости гидролиза. Щелочной гидролиз, приводящий к рацемизации, применялся Фищером весьма редко. В качестве основного метода расщепления белков он использовал гидролиз разбавленной соляной кислотой. На основании изложенного выще мы знаем, что этот метод разложения белков применялся уже в течение 80 лет, но первое контролируемое глубокое разложение белков было осуществлено только в 1873 г. Г. Глазивецем и И. Габерманом [256], которые нагревали казеин с соляной кислотой до кипения. Эти ученые, как известно, нашли среди продуктов гидролиза казеина тирозин, глютаминовую кислоту и лейцин. [c.74]

    Для характеристики изменений в белковой массе сыра приходится различать объем этих изменений и глубину их. В твердых сырах распад белка идет глубоко с частичным образованием амшюкислот. В швейцарском сыре были найдены лейцин, тирозин, фенилаланин, аргинин, лизин, гликоколл, аланин, пролин, аспарагиновая кислота, триптофан, гистидин, гуанидин. Жиры в твердых сырах изменяются мало. Молочный сахар полностью сбраживается уже в первые 5—10 дней созревания. При созревании в сыре образуются также летучие жирные кислоты уксусная, пропионовая, масляная, капроновая. [c.437]


Смотреть страницы где упоминается термин Лейцин распад: [c.178]    [c.116]    [c.546]    [c.391]    [c.432]    [c.77]    [c.360]    [c.449]    [c.47]    [c.502]    [c.49]    [c.106]    [c.264]    [c.319]    [c.60]   
Основы биологической химии (1970) -- [ c.447 , c.448 ]




ПОИСК





Смотрите так же термины и статьи:

Лейцин



© 2024 chem21.info Реклама на сайте