Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нафталины, анализ

    Спектр ЭПР нафталина в кристалле дурола иллюстрирует этот результат. В данном случае орбиталями фа и грь являются самая нижняя разрыхляющая и самая верхняя связывающая орбитали соответственно, т. е. те же орбитали, которые использовались для неспаренного электрона при рассмотрении положительного и отрицательного ион-радикалов нафталина. Если учесть соотношение парности для альтернантных углеводородов, спиновая плотность (26) должна быть весьма близка к спиновой плотности в катион- и анион-радикалах нафталина. Анализ спектров ЭПР показал, что нормализованные спиновые плотности л-электрона на атомах 1, 2 и 9 углерода составляют+0,219,-ЬО,062 и —0,063, что согласуется с ожидаемыми. Важно отметить, что хотя имеются два неспаренных электрона, константа сверхтонкого взаимодействия для переходов Amg = 1 не в два раза больше, чем для радикала с S = Vo. [c.165]


    Можно определить также общее количество нафталинов независимо от присутствия тех или иных индивидуальных нафталинов. Другие алкил-нафталины и полиядерные ароматические углеводороды должны быть до анализа удалены дистилляцией, так как их полосы поглощения накладываются на область поглощения определяемых нафталинов. Углеводороды с сопряженными связями (как диолефины, стиролы и индены) также мешают при анализе, по могут быть удалены водным раствором нитрата илн ацетата ртути или щелочным раствором перманганата. [c.285]

    Свойства и анализ нафталина [c.424]

    АНАЛИЗ НЕФТЯНОГО КОКСА И НАФТАЛИНА [c.784]

    Из электрохимических методов анализа полярографический метод достаточно широко используют для анализа нафталина, его гомологов и полициклических ароматических углеводородов, обладающих несимметричной системой я-электронов и способных сравнительно легко восстанавливаться до дигидропроизводных [57]. [c.133]

    С развитием спектроскопии и особенно газожидкостной хроматографии снизился интерес к полярографическим методам анализа нафталина и других полициклических ароматических углеводородов, хотя этот метод и используется для определения нафталина и его гомологов [54]. Применение спектральных методов анализа представило значительный интерес потому, что сопряженная система я-электронов существенно изменяет спектральные характеристики ароматических углеводородов по сравнению с углеводородами других классов. [c.134]

    Хроматографический анализ широко используют в текущем контроле нефтехимических и коксохимических производств. В частности, для определения промежуточных продуктов переработки сырого бензола, оценивая концентрации примесей по отношению к основному компоненту [72], для определения составов бензола и узких бензольных фракций, содержания нафталина в поглотительных маслах [73]. [c.136]

    В качестве сорбентов использовали неорганические фазы. Так, смесь антрацена и фенантрена анализировали при 270°С на колонке, заполненной хлоридом кальция на хромосорбе или на ИНЗ-600 [79] смеси нафталина, бифенила, аценафтена, аценафтилена, флуорена, фенантрена, антрацена, пирена и флуорантена разделяли на оксиде алюминия, пропитанном раствором едкого натра и хлорида натрия [80] смесь нафталина, бифенила, фенантрена и терфенилов — на сульфате бария при 210—350°С [81]. Успешно проводится количественный анализ технических пе-ковых дистиллятов на хроматографе с пламенно-ионизационным детектором и программированием температуры в интервале 110— [c.137]


    При определении содержания нафталина по температуре кристаллизации анализу предшествует его подсушка (7—10% водоотнимающего вещества — безводный сульфат меди или безводный, сульфат натрия). [c.141]

    Среди физико-химических методов определения ароматических углеводородов в воздухе наиболее широко используется газохроматографический метод [8, с. 49]. В качестве неподвижной фазы применяется полиэтиленгликольадипинат, нанесенный на ИНЗ-600. Минимальный объем пробы 10 —10 мкг. Для хроматографического анализа нафталина его предварительно концентрируют сорбцией бензолом [10]. [c.323]

    Неблагоприятное воздействие нафталина на работу многих последующих отделений коксохимического производства привело к сочетанию первичного охлаждения с поглошением нафталина водо-смоляной эмульсией. В табл. 8.3 показаны возможные степени очистки газа этим способом при использовании холодильников различного типа. Анализ таблицы показывает, что подача водо-смоляной эмульсий позволяет снизить содержание паров нафталина в газе. В трубчатых холодильниках этот прием позволяет, кроме того, заметно уменьшить гидравлическое сопротивление. Содержание в газе аэрозолей при этом даже несколько увеличивается. Это явление — увеличение количества аэрозольной смолы при взаимодействии газа с водой, содержащей смолу, наблюдается и в газосборниках. [c.216]

    Для производства фталевого ангидрида и суперпластификатора можно использовать технический нафталин с температурой кристаллизации 79°С (ТА) и ниже - даже 76°С (92,35% нафталина) — нафталин технический марки В (ТВ). Для приготовления фталевого ангидрида не опасны содержащиеся в сырье метилнафталины, образующие при окислении те же продукты, что и нафталин (фталевый и малеиновый ангидрид), а также тионафтен. Не представляют опасности тионафтен и метилнафталины и при изготовлении суперпластификатора. При производстве фталевого ангидрида вредны непредельные соединения, нарушающие работу оборудования из-за образования смолки при окислении, а также индол и бензонитрил, изменяющие состав, структуру и свойства катализатора. Анализ состава нафталиновой фракции показывает возможность выделения нафталина либо ректификационными, либо кристаллизационными методами. [c.333]

    Первая из них, по данным элементарного и спектрального анализов, содержит очень небольшое количество гомологов нафталина и значительное количество гомологов бензола с боковыми цепями нормального строения. Вторая фракция, не образующая комплекс с карбамидом, представляет собой, но данным тех же анализов, смесь моно-, би-и трициклических ароматических углеводородов. [c.45]

    Нафталин выделяется из его фракции при замораживании в виде кристаллической крупы, которая может быть отфильтрована. Фильтрат при обработке кислотой вновь выделяет порцию нафталина. Анализ производится следующим образом 200—300 г среднего масла перегоняются из колбы с небольшой дефлегмационной трубкой, причем собирается фракция 190—250°. Полученную фракцию пробуют закристаллизовать при 0° и частом помешивании. Если кристаллы нафталина при этом не выпадают, или если их слшпком мало, фракцию подвергают вторичной перегонке в тех же условиях, опять собирая то, что перейдет от 190 до 250°. Обыкновенно после вторичной перегонки при 0°, еще лучше при —10°, вся масСа густеет от выделившегося нафталина, который отсасывают на Бюхнеровской воронке. Фильтрат опять подвергается перегонке, причем собирается фракция 190—240°. Обыкновенно при охлаждении нафталина выделяется мало, а потому правильнее полученную фракцию смешать с равным объемом нефтяного эфира и очистить 5% серной кислоты. После отгонки растворителя из промытого водой рафината, охлаждение выделяет много нафталина, который присоединяется к главной порции. Сырой нафталин отжинается на пористой пластинке и взвешивается. Более чистый продукт получается возгонкой по обычным правилам для этой операции. [c.423]

    Качество исходных фугованного и прессованного нафталинов отражено в табл. 1. Как сырье, так и продукт анализировались по показателям ГОСТ 16106 - 70 по стандартным методикам дополнительно определялось йодное число пр Маргошесу [б Гидроочистку проводили следующим образом. Раствор нафталина в толуоле обрабатывали водородом над алюмокобальтмо-либденовым катализатором при температуре 125 С, давлении 50 атм и объемной скорости 600 л/ч. Из гидрогенизата отгонялся толуол, после чего оставшуюся часть ректифицировали на колонке эффективностью 15 т.т. с отбором очищенного нафталина. Анализ очищенного нафталина приведен в табл,1. [c.99]

    Точность анализа фракций типичного бензина или продуктов крекинга состап.тяет около 0,2% от общего количества образца или 5% от суммарноги количества нафталинов. [c.285]

    Неполнота выделения нафталина из среднего масла приводи к несогласованности заводских и лабораторных данных — нечто подобное имеет место и при определении в нефти парафина. Здесь очевидно надо придерживаться ири анализе тех условий, в кажих перегонка нафталина производится на заводе. Для исследований же теоретического характера интереснее определять вое таояичество нафталина во фракции, что удобнее всего достигается связыванием нафталина в виде пикрата. Такой метод был предложен, налр., Кюсте-ром (377). Для анализа надо иметь насыщенный на холоду раствор пикриновой кислоты в воде с точно установленным титром. Навеска нафталиновой фракции помещается в небольшую круглодонную колбочку с каучуковой пробкой с одаим отверстием, в которое вставляется запаянная с одного конца трубочка с отверстием сбоку. [c.423]


    Основной причиной этих противоречий является способность асфальтенов, как и смол, образовывать молекулярные соединения — ассоциаты. Поэтому молекулярная масса смолисто-асфаль-теновых веществ в очень большой степени зависит от принятого метода анализа и условий эксперимента. Большое значение имеют также тип растворителя, его полярность, концентрация асфальтенов в растворе, температура и т. п. Надежные и хорошо воспроизводимые значения молекулярной массы асфальтенов получаются, например, при использовании криоскопнческого метода в растворе нафталина при температуре 80 °С (температуре плавления нафталина) и выше при концентрации асфальтенов в растворе от 1 до 16%. При этом молекулы асфальтенов практически не ассоциируют, и молекулярная масса стабильно равна от 2000 до 2500. Это значение подтверждено многими исследованиями последнего времени [42]. Определение молекулярной массы тех же асфальтенов методом мономолекулярной пленки бензольного раствора асфальтенов на воде приводит к значениям 50 000— 100 000 и более [19, с. 501 и сл.]. Вероятно, истинно мономолеку-лярного слоя асфальтенов при этом не получается и основную роль здесь играют крупные ассоциаты молекул. Таким образом, такие высокие значения характеризуют не молекулярную массу асфальтенов, а степень ассоциации их молекул в принятых условиях. [c.33]

    Вестертерп (1962 г.) применил такой подход к системам параллельных и последовательных реакций первого порядка и нашел, что для последних кривая теиловыделения ири высокой селективности промежуточного продукта имеет форму сдвоенного S. При таких условиях возможны не менее пяти стационарных состояний. Анализ был применен в исследовании процесса получения фталевого ангидрида из нафталина. Реактор с псевдоожиженным слоем моделировался как проточный реактор с перемешиванием. Обоснования для такого приближения приводятся в разделе, посвященном автотер-мическим реакторам. [c.42]

    Глава XXIX. Анализ нефтяного кокса и нафталина..........................784 [c.886]

    В книге- рассмотрены современное состояние и тенденцнн производства и потребления основных ароматических углеводородов. Описаны методы анализа и оценки их товарных свойств и обоснованы требования к качеству выпускаемых промышленностью продуктов. Дано описание технологических процессов производства бензола, ксилолов, полиметилбензо-лов, нафталина, антрацена, фенантрена и некоторых других многоядерных ароматических углеводородов, получаемых из каменноугольного и нефтяного сырья. Подробно изложена технология получения специальных сортов бензола и нафталина, используемых для процессов органического синтеза. Освещены научные основы и промышленные способы переработки важнейших ароматических углеводородов. Дана токсикологическая оценка названных соединений и рассмотрены меры по снижению их вредного воздействия на природу и человека. [c.2]

    Как показано рентгеноструктурным анализом, у антрацена так же, как и у нафталина, нет характерной для бензола вырав-ненности длин связей, шестиугольники ароматических колец пре- терпевают существенную дефсгрмацию [2, с. 246]  [c.21]

    Непосредственное определение нафталина в каменноугольной смоле при хроматографическом анализе проводят на твердом носителе — смесь ИНЗ-600 (85%) и дульцит (15%) [85]. Неподвижная фаза — ПЭГА в количестве 0,5% от массы твердого носителя. Температура колонки 130°С. В качестве внутреннего стандарта используют ацетофенон. Длительность определения не превы-щает 20 мин, а время выхода нафталина 5 мин (против 8—12 ч по обычной методике). Относительная ошибка определения не превышает 1,55%. Цикл непрерывной работы колонки более 800 ч. [c.138]

    Для определения в смоле содержания нафталина применяют метод, включающий лабораторную дистилляцию смолы с последующим анализом фракций (определение содержания нафталина по температуре кристаллизации). Такую информацию можно получить при непосредственном хроматографировании каменноугольной емолы [85], причем отпадает необходимость в сложном и трудномеханизируемом дистилляционном анализе смолы. [c.139]

    Между онектрами люминесценции и поглощения существует определенная зависимость. Спектры люминесценции всегда сдвинуты в более длинноволновую область по сравнению со спектрами поглощения. В связи с тем, что методы УФ-спектро-окаиии наиболее эффективны ири анализе ароматических веществ, люминесцентные методы также используются для исследования этих соединений в нефтяных молекулярных растворах. Эталонные спектры ароматических соединений, встречающихся в нефтях и нефтепродуктах, представлены в работе [99]. Так, в спектре свечения нафталина выделяется набор полос различной интенсивности в интервале 320—340 нм. Фенантрен обладает характерными полосами в области 345—375 им, а антрацен — 370—430 нм. Следует отметить, что достаточно узкие полосы флуоресценции (короткоживущей люминесценции) могут быть получены лишь при низких темшературах е помощью эффекта Шпольско го [15]. В растворах происходит ущирение полос, и спектр флуоресценции обычно представляет широкую бесструктурную полосу. [c.57]

    Применение масс-спектрометрии высокого разрешения при анализе фракций нефти и нефтепродуктов обусловлено присутствием в них соединений, имеющих приближенно одинаковую молекулярную массу (например, нонан и нафталин— 128 а. е. м.), но разные брутто-формулы С9Н20 (точное значение 128, 1975) и СюНз (точное значение 128, 1036). Так, при анализе ароматических и полярных фракций нефти встречаются следующие изобарные пары [186]  [c.134]

    О наличии значительного числа циклоалкановых фрагментов в общей полициклической структуре свидетельствует анализ масляных дистиллятных фракций, мальтенов, которые при катагенети-ческих преобразованиях конденсируются между собой и частично переходят в ареновые циклы. Дополнительную информацию можно получить при анализе продуктов пиролиза [359. При исследовании конденсированных продуктов пиролиза смолисто-асфальтеновых веществ установлено, что при 350 и 500 °С основные структурные группы составляют алкилциклогексаны и циклопентаны, при 500—800 °С — замещенные циклоалкены вместе с алкилбензо-лами и нафталинами, при 800 °С — дигидронафталины и полиядерные углеводороды. [c.168]

    Подробно описан дающий удовлетворительные результаты метод анализа смеси, получаемой при высокотемпературном сульфи ровании нафталина [571]. Этот метод основан на нерастворимости бензидиновых солей 2-монос.ульфо-2,6- и 2,7-дисульфокислот и на малой растворимости натриевой соли-2-сульфокислоты нафталина Б водном растворе хлористого натрия. [c.89]


Смотреть страницы где упоминается термин Нафталины, анализ: [c.249]    [c.9]    [c.9]    [c.145]    [c.133]    [c.359]    [c.75]    [c.396]    [c.103]    [c.22]    [c.106]    [c.787]    [c.886]    [c.86]    [c.92]    [c.30]    [c.30]    [c.31]   
Курс газовой хроматографии (1967) -- [ c.267 ]

Курс газовой хроматографии Издание 2 (1974) -- [ c.235 ]




ПОИСК







© 2025 chem21.info Реклама на сайте