Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллы, строение формы

    Низкотемпературные свойства. В отличие от бензинов в состав дизельных топлив входят высокомолекулярные парафиновые углеводороды нормального строения, имеющие довольно высокие температуры плавления. При понижении температуры эти углеводороды выпадают из топлива в виде кристаллов различной формы и топливо мутнеет. Возникает опасность забивки топливных фильтров кристаллами парафинов. Принято считать, что температура помутнения характеризует нижний температурный предел возможного применения дизельных топлив. При дальнейшем охлаждении помутневшего топлива кристаллы парафинов сращиваются между собой, образуют пространственную решетку и топливо теряет текучесть. Температура застывания — величина условная и используется для ориентировочного определения возможных условий применения топлива. Этот показатель принят для маркировки дизельных топлив на следующие три марки летнее ( заст. менее -10 °С), зимнее ( заст. менее — 35-45 °С) и арктическое ( заст. менее -55 °С). Применимы для улучшения низкотемпературных свойств дизельных топлив следующие три способа  [c.71]


    Явление аллотропии может быть обусловлено либо различием состава молекул простого вещества данного элемента (аллотропия состава), либо способом размещения молекул или атомов в кристаллах (аллотропия формы). Способность элемента к образованию соответствующих аллотропных модификаций обусловлена строением атома, которое определяет тип химической связи, строение молекул и кристаллов. [c.254]

    Низкотемпературные свойства. При охлаждении топлив парафиновые углеводороды нормального строения выпадают в виде кристаллов различной формы. Топливо мутнеет, возникает опасность забивки фильтров кристаллами углеводородов. Температура, при которой возникает это явление, получила название температуры помутнения или начала кристаллизации. При дальнейшем снижении температуры выделившиеся кристаллы образуют сетчатые каркасные структуры, топливо теряет подвижность или, как принято говорить, застывает. Эту температуру называют температурой застывания. По температурам помутнения и застывания топлива судят о возможностях его использования при низких [c.18]

    Теплоемкость одних и тех же веществ в жидком и твердом состоянии практически одинакова. Это указывает на то, что характер теплового движения частиц при плавлении существенно не меняется это движение сводится к колебаниям частиц около некоторых положений равновесия [174]. Величина теплоты плавления зависит от состава, строения, формы и взаимного расположения структурных единиц в кристалле. Температура плавления кристаллического тела зависит от энергии его решетки, определяемой ее основными параметрами [175], [c.158]

    Определяющее влияние на формирование структуры твердого вещества оказывает природа связи. Вместе с тем здесь действуют и- другие факторы природа структурных единиц — их состав, строение, формы, размеры — и такой важный фактор, как энергетическое состояние вещества. Ионные, атомные, молекулярные и макромолекулярные структурные единицы образуют соответствующие кристаллы или же тела непериодического строения. Большему или меньшему значению свободной энергии отвечают модификации вещества различной плотности, в том числе огромное число метастабильных модификаций. [c.155]

    Для аморфного состояния характерно наличие только ближнего порядка в расположении структурных единиц. Дальний порядок, свойственный кристаллам, отсутствует. Компактное аморфное состояние представляет собой сильно переохлажденную жидкость и отличается от последней только отсутствием лабильного обмена местами между отдельными структурными фрагментами. В дисперсном аморфном состоянии, представляющем собой тонкий порощок, состоящий из агрегатов, не имеющих упорядоченного строения, химическое взаимодействие между отдельными частицами полностью отсутствует. В стекле отдельные ассоциаты связаны друг с другом силами химического взаимодействия, но эти связи не имеют пространственно упорядоченного характера, как в кристалле. Обе формы аморфного состояния вещества в термодинамическом отношении метастабильны и при благоприятных условиях способны кристаллизоваться с выделением теплоты. [c.188]


    Природный диоксид марганца имеет несколько модификаций пиролюзит, полиалит и рамсдеелит. Из-за различия строения кристаллических решеток, размеров кристаллов, их формы модификации диоксида марганца существенно отличаются по своим свойствам. Наиболее активна так называемая у-модифи-кация (рамсдеелит). [c.188]

    Один и тот же элемент может образовывать несколько разных типов простых Веществ, называемых аллотропными модификациями. Известно свыше 400 разновидностей простых веществ. Явление аллотропии может быть обусловлено либо различным составом молекул простого вещества данного элемента (аллотропия состава), либо способом размещения молекул или атомов в кристаллах (аллотропия формы). Способность элемента к образованию соответствующих аллотропных модификаций обусловлена строением атома, которое определяет тип химической связи, строение молекул и кристаллов. [c.253]

    Рассмотрим некоторые особенности распространения УЗК в металлических материалах. Металлические материалы, характеризующиеся поликристаллическим строением, в общем случае состоят из зерен кристаллов различной формы и размеров. Зерна формируются кристаллизацией из расплава или кристаллизацией в процессе термической обработки. Одно зерно может быть монокристаллом или состоять из двух и более фаз, раздробляющих зерно. Различие отдельных зерен между собой заключается в пространственной ориентации кристаллической решетки. Форма зерен может быть почти сферической, удлиненной или сплющенной в результате пластической деформации. Характерной особенностью кристаллического строения металлических материалов является анизотропия их свойств. [c.9]

    Одной из особенностей кристаллических тел является их способность зарождаться и расти из жидкой фазы под действием охлаждения или постоянного электрического тока". При кристаллизации могут возникнуть кристаллические образования различных видов. Полногранный кристалл (полиэдр) представляет собой кристаллическое образование правильной формы. Кристаллы неправильной формы называются кристаллитами. Кристаллит может и.меть округлые очертания, и тогда он называется зерном, кристаллиты причудливых очертаний ветвистого строения называются дендрита.ми. [c.23]

    Низкотемпературные свойства. В отличие от бензинов в состав дизельных топлив входят высокомолекулярные парафиновые углеводороды нормального строения, имеющие довольно высокие температуры плавления. При понижении температуры эти углеводороды выпадают из топлива в виде кристаллов различной формы, и топливо мутнеет. Возникает опасность забивки топливных фильтров кристаллами парафинов. Принято считать, что температура помутнения характеризует нижний температурный предел возможного применения дизельных топлив. При дальнейшем охлаждении помут- [c.141]

    Сильвин и галит встречаются в кристаллах в форме куба а 100 (/) и только в редких случаях на кристаллах галита развиваются грани октаэдра о 111 (3), например при кристаллизации этого вещества из водных растворов, содержащих карбамид (мочевину)— 0(NH2)2. При изменении концентрации карбамида в растворе можно получить кристаллы Na в комбинации куба с октаэдром. Агрегаты галита в самосадочных месторождениях рыхлые, пористые, сложены индивидами скелетного строения (2). Кристаллы галита и сильвина обладают весьма совершенной спайностью по кубу 100 , поэтому [c.156]

    Сингония, пространственная группа, тип структуры. Облик кристалла и формы. Строение агрегата. (Огранение минерального индивида — № рис.) [c.248]

    Двуокись марганца известна в виде нескольких кристаллических разновидностей (модификаций), различающихся строением кристаллической решетки. Наиболее полная и удобная классификация разновидностей двуокиси марганца дана Глемзером и Гат-товым. По этой классификации имеется несколько модификаций — а (альфа), р (бета), "у (гамма), 6 (дельта), е (эпсилон), т] (эта), различающихся размером кристалла, его формой, особенностями взаимного расположения кристаллов. Кроме того, в пределах каждой модификации существует двуокись марганца, кристаллы которой имеют в той или иной степени скристаллизованную структуру. Такие разновидности называют образцами с разной степенью кристалличности . Особенности строения кристаллической решетки играют существенную роль для характеристики качества двуокиси марганца как активного вещества источников тока. Строение кристаллов определяют рентгенографическим способом. Расстояние [c.54]

    Полученные пленки характеризуются большим разнообразием структур. Наряду с отдельными сферолитами различных размеров ж строения (рис. 1—4), встречаются структуры типа лент (рис. 5) и кристаллы различных форм и размеров (рис. 6). [c.395]

    Согласно гипотезе Келлера, обсуждавшейся в разделе III.5.2, основное условие образования красивых кристаллов правильной формы заключается в регулярном плотном складывании макромолекул на (Себя. По-видимому, справедливо и обратное предположение, а именно монокристаллы, не обладающие правильным пространственным строением и регулярностью поверхностей роста, содержат большое число неупорядоченных длинных петель. Исходя из сказанного ранее, можно также ожидать при благоприятных условиях кристаллизации возможности реализации модели Фишера, для которой характерно такое расстояние между выпрямленными участками макромолекул, соединенными складкой, как показано на рис. III.62, б [25, 28, 30]. В зависимости от природы полимера подобные структуры также можно считать рыхлыми петлями. [c.241]


    Парафины — смеси углеводородов метанового ряда нормального строения с 18—35 атомами углерода в молекуле с молекулярной массой 300—450, образующие на металле после испарения растворителя кристаллы пластинчатой формы с низкой адгезией к подложке. Выпускают парафины нефтяные (ГОСТ 23683—79, восемь марок разного назначения) и парафины для пищевой промышленности (ГОСТ 23683—79, три марки). [c.141]

    В отличие от бензинов в составе дизельных топлив может быть довольно много углеводородов с высокой температурой плавления. К их числу, в первую очередь, относятся алканы нормального строения. При понижении температуры самые высокоплавкие углеводороды выпадают из топлива в виде кристаллов различной формы, и топливо мутнеет. ВозникаеТ опасность забивки фильтров" кристаллами парафинов. По- иа этому принято считать, ЧТО температура помутнения ди- зельных, топлив должна быть несколько ниже температуры применения. Однако топлива хорошо прокачиваются и при температурах ниже темпера- [c.141]

    Н. И. Черножукова [24—26]. Эти исследования позволили установить, что углеводороды всех гомологических рядов при кристаллизации из растворов в неполярных растворителях, в том числе и в нефтяных фракциях, образуют кристаллы орторомбической формы, причем характерна ступенчатая слоистость кристаллов, т. е. каждый новый слой кристаллизуется на предыдущем, образуя пирамиду из параллельных ромбических плоскостей (рис. 35 а в). Кристаллы твердых углеводородов, принадлежащих разным гомологическим рядам, различаются по размерам и степени слоистости. Наибольшие размеры кристаллов и число ромбических плоскостей имеют нормальные парафиновые углеводороды (см. рис. 35, а), нафтеновые и особенно ароматические углеводороды характеризуются меньшей величиной кристаллов и менее слоистым строением (см. рис. 35, б, в). При совместной кристаллизации твердых углеводородов в неполярных, растворителях образуются смешанные кристаллы, которые являются твердой фазой переменного состава, т. е. состав может меняться при сохранении однородности кристаллической структуры, что характерно для соединений, близких по строению молекул. В данном случае возможность образования смешанных кристаллов обусловлена наличием в молекулах твердых углеводородов длинных парафиновых цепей в основном нормального строения. При совместной кристаллизации из неполярнрй среды форма кристаллов остается орторомбической, а их размер зависит от содержания циклических углеводородов в смеси с парафиновыми чем больше циклических углеводородов, тем меньше размер кристаллов и число наслоений. [c.129]

    Исследования [35] позволили установить, что углеводороды всех гомологических рядов при кристаллизации из растворов в неполярных растворителях, в том числе и в нефтяных фракциях, образуют кристаллы орторомбической формы при характерной ступенчатой слоистости кристаллов, т.е. каждый новый слой кристаллизуется на основании предыдущего, образуя пирамиду из параллельных ромбических плоскостей. Кристаллы твердых углеводородов, принадлежащих разным гомологическим рядам, различаются величиной и степенью слоистости. Максимальный размер кристаллов и число ромбических плоскостей имеют к-алканы. Нафтеновые и особенно ароматические углеводороды характеризуются меньшим размером кристаллов и менее слоистым строением. При совместной кристаллизации твердых углеводородов в неполярных растворителях образуются смешанные кристаллы, которые являются твердой фазой переменного состава, т.е. состав может меняться при сохранении однородности кристаллической структуры, что характерно для соединений, близких по строению молекул. Возможность образования смешанных кристаллов обусловлена наличием в мо- [c.20]

    Известно несколько разновидностей диоксида марганца, различающихся строением кристаллических решеток. В настоящее время классифицируют а-, -, v-, 6-, е-модификации. Кроме того, каждая модификация имеет разновидности. Различие в свойствах МпОг, полученного разными методами, объясняется не только строением кристалличес1 ой решетки, но и размерами кристаллов, их формой и взаиморасположением. [c.204]

    При обезмасливании петролатумов с применением полярных модификаторов структуры твердых углеводородов, как и при интенсификации этим методом процесса депарафинизации, в системе присутствуют два типа ПАВ-смолы и вводимые модификаторы. В присутствии смол твердые углеводороды кристаллизуются в дендритной или агрегатной форме. Дендритные кристаллы группируются в виде древовидных, шарообразных или других образований в зависимости от строения молекул смол. Наличие в молекулах смол достаточно длинных алкильных цепей, экранирующих ароматические циклы и гетероатомы, приводит к их совместной с твердыми углеводородами кристаллизации. При этом получаются крупные кристаллы неправильной формы, увеличивающие скорость и четкость отделения твердой фазы от жидкой. В то же время с увеличением концентрации таких смол в растворе размеры кристаллов уменьшаются за счет блокировки смолами растущих центров кристаллизации, диффузия к ним молекул твердых углеводородов затрудняется. Смолы, не содержащие длинных алкильных цепей и обладающие высокой полярностью, адсорбируются на кристаллах твердых углеводородов и вызывают их агломерацию, что отрицательно сказывается на показателях процессов и депарафинизации, и обезмасливания. Однако в результате адсорбции этих смол на кристаллах возникают поверхностные перенапряжения, которые усиливаются из-за одновременного роста и сжатия кристалла при охлаждении, что приводит к деформации их поверхности. Участки смещенных слоев молекул кристалла, не блокированные в начальный момент смолами, являются центрами кристаллизации, которая протекает в этом случае в дендритной форме. [c.117]

    Температура начала кристаллизации сухих реактивных топлив определяется присутствием алкановых углеводородов нормального строения. Форма выделяющихся кристаллов сильно зависит от химического состава углеводородной среды [9, 10]. Скорость роста кристаллов зависит от нескольких факторов и приближенно выражается следующей формулой [11] [c.25]

    Сингония структура облик кристалла и форма строение агрегата [c.134]

    Исследование структуры кристаллов. Правильная форма кристаллов обусловлена упорядоченным расположением o taвля-ЮИ1ИХ их частиц — атомов, ионов или молекул. Это расположение может быть представлено в впде кристаллической решетки — пространственного каркаса, образованного пересекающимися друг с другом прямыми линиями. В точках пересечения — узлах решетки— лежат центры частиц, образующих кристалл. Такие представления о строении кристаллических тел высказывались давно многими исследователями, в частности, М. В. Ломоносов нсполь-зовал их для объяснения свойств селитры. Однако экспериментально исследовать внутреннюю структуру кристаллов удалось [c.141]

    Удалось показать, что во всех случаях, за исключением одного (к-гексакозана), варьируя основные факторы, сильно влияющие на направление и скорость кристаллизации (температура, растворитель, концентрация раствора и др.), можно получить любой из трех типов кристаллов углеводородов — пластинки, иглы и мелкокристаллическую массу, состоящую из кристаллов неправильной формы [106]. Кристаллы к-гексакозана в виде игл удается получить только при внесении в его раствор небольших добавок смолистых веществ. Решающими факторами, обусловливающими образование той или иной формы кристаллов всех исследованных углеводородов, являются скорость кристаллизации раствора или расплава и величина температурной разности между точкой плавления чистого углеводорода и точкой домутнения (или температурой кристаллизации раствора). Было по-"казано, что парафины с преобладанием соединений нормального строения можно закристиллизировать в виде пластинок или мелко-к сталлической массы из кристаллов неправильных форм измёне-ниём температуры и скорости кристаллизации, или же в форме пластинок добавлением в раствор небольших количеств нефтяных смол. Парафины же, содержащие в своем составе углеводороды развет- [c.75]

    Исследование структуры кристаллов. Правильная форма кристаллов обусловлена упорядоченным расположением составляющих их частиц - атомов, ионов или молекул. Как указано выше, это расположение может быть представлено в виде кристаллической решетки - пространственного каркаса, образованного пересекающимися друг с другом плоскостями. В точках пересечения трех плоскостей (узлах решетки) лежат центры частиц, образующих кристалл. Такие представления о строении кристаллических тел высказывались давно многими исследователями, в частности М. В. Ломоносов использовал их для объяснения свойств селитры. Однако экспериментально исследовать внутреннюю структуру кристаллов удалось только в XX столетии, после того как в 1912 г. Лауэ, Фридрих и Книппинг (Германия) открыли явление дифракции рентгеновских лучей, на котором основан метод рентгеноструктурного анализа. [c.151]

    Минерал. Химический состав. Примеси Сингония, простраиствениая группа, тип структуры. Облик кристалла и формы. Строение агрегата. (Огранение минерального иидивнда — № рнс.) Спайность. Излом Цвет. Черта [c.200]

    Минерал. Химический состав. Прнмеси Сингония, пространственная группа, тнп структуры. Облнк кристалла и формы. Строение агрегата. (Огране иие минерального индивида—№ рис.) Спайность. Излом Цвет. Черта Оптически свойства [c.258]

    Как известно, гидроокиси никеля и кобальта обладают отчетливо выраженной слоистой структурой с близкими параметрами кристаллической решетки. Однако они существенно различаются по своему морфологическому строению. Согласно электронно-микроскопическим данным, N (011)2 представлен глобулоподобными и пластинообразными частицами, а у Со(ОН)2 отчетливо видны хорошо ограненные кристаллы гексагональной формы. [c.69]

    Оказалось, что фракции полиэтилена с мол. весом от 21 ООО до 300 ООО образуют в растворе одинаковые вторичные структуры в одном и том же интервале температур. При нанесении кипящего ксилольного раствора на подложку при комнатной температуре получаются кристаллы дендритного характера (рис. 1). Начиная с 40 и до 90° на подложке образуются пластинчатые кристаллы пирамидальной формы, хорошо известные в литературе [5]. На рис. 2 представлена типичная микрофотография, полученная для полиэтилена мол. веса 21 ООО при 70°. На большой плоскости основания, имеющего ромбовидную форму, расположено много более мелких пирамидальных кристал.)1ов. Отдельные слои, образующие соседние кристаллы, перекрываются, 1ю мешая друг другу. На рис. 3 (мол. вес 21 ООО, температура подложки 90°) хорошо видно, что рост кристаллов идет до дислокационному механизму. На рис. 4 приведена микродифракция, снятая с участка монокристалла полиэтилена. Кристаллы получаются в фракционированном полиэтилене низкого давления мо.л. веса от 21 ООО до 300 ООО при температуре подложки от комнатной до 100°. Кроме того, интересно отметить, что изменение концентрации раствора полимера в пределах от 0,001 до 0,1% не сказывается на характере вторичных образований в зависимости от температуры. На рис. 5 (мол. вес 30 ООО, температура 90°) отчетливо видны кристаллы, полученные из 0,1 %-ного ксилольного раствора. Эти кристаллы менее совершенны, чем возникшие в более разбавленном растворе (см. рис. 2). На микрофотографии можно рассмотреть, что утолщения и наросты располагаются чаще всего по краям плоскости основания. Таким образом, фракционированный полиэтилен с мол. весом до 300 ООО при сравнительно низких температурах (до 100°) дает пластинчатые кристаллы. Очевидно, что регулярное строение и одинаковый размер молекулярных цепей значительно облегчают условия образования однородных структурных единиц, что ведет, в свою очередь, к быстрому упорядочению их в более высоко организованные структуры. Выше 100° возникают структуры, подобные структурам в нефракционировапном полиэтилене при этой же температуре [1]. На снимках (рис. 6) появляются полосатые структуры и ленты. Возникшие кое-где плоскости часто образуют завихрения, подобные зародышам сферолитов. Это совпадает с данными Ли Ли-шен, Андреевой и Каргина [6], показавшими, что при 100° происходит резкое ослабление сил связи между отдельными лентами, образующими кристаллы. Начиная с мол. веса ЗОС) ООО и выше характер вторичных структур изменяется. При температуре подложки от комнатной до 90° наряду с пластинчатыми образованиями возникают хорошо сформированные спиралеобразные структуры. На рис. 7 дана микрофотография раствора полиэтилена низкого давления мол. веса 360 ООО при 70°. Одновременно с пластинками хорошо видны типичные спирали. Легко можно рассмотреть, как утолщенные места спирали перерастают в плоскости. Местами видны полосатые структуры. Возникшие спиралевидные образования довольно гибки (рис. 8 мол. вес 30 ООО, температура 90°). [c.150]


Смотреть страницы где упоминается термин Кристаллы, строение формы: [c.96]    [c.22]    [c.151]    [c.471]    [c.231]    [c.218]    [c.265]    [c.489]    [c.124]    [c.65]    [c.153]    [c.138]   
История химии (1975) -- [ c.95 ]

История химии (1966) -- [ c.96 ]




ПОИСК





Смотрите так же термины и статьи:

Кристалл строение

Кристаллы форма



© 2025 chem21.info Реклама на сайте