Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эйнштейн единица

    Эйнштейн — единица лучистой энергии, равная энергии числа Авогадро ( моля ) фотонов излучения данного вида. Выразится ли одинаковыми числами эргов 1 эйнштейн красного и фиолетового излучения Во- сколько раз 1 эйнштейн инфракрасного излучения с i --= 20 ООО А меньше 1 Эйнштейна ультрафиолетового излучения с частотой ч = 10 сек  [c.67]


    Эйнштейн — единица лучистой энергии, равная энергии числа Авогадро ( моля ) фотонов излучения данного вида  [c.90]

    В соответствии с законом эквивалентности Штарка-Эйнштейна, поглощаемый фотон вызывает фотохимическое возбуждение одной молекулы. Количественной мерой превращения служит квантовый выход реакции, равный отношению числа частиц, претерпевших превращение в результате фотохимической реакции, к числу поглощенных фотонов. В предельном случае для первичных процессов выход должен равняться единице, в экспериментах, в зависимости от длины волны, интенсивности света и температуры и типа вещества, выход может принимать значения от 10 3 до 10. Так как энергия активации химических реакций лежит в пределах 40-420 кДж/моль, можно сделать вывод (сравнивая ее с энергией одного моля фотонов, равной Nab-/1 )0 действии на реакции видимых, ультрафиолетовых и рентгеновских лучей. [c.177]

    Квантовый выход в обычных фотохимических процессах должен быть равен или меньше единицы. Это следует из принципа фотохимической эквивалентности Эйнштейна, согласно которому [c.239]

    Скорость неразветвленной цепной реакции может быть значительно увеличена воздействием на систему физических агентов— света, ионизирующих излучений — способствующих возникновению свободных радикалов. При фотохимическом инициировании квантовый выход неразветвленной цепной реакции значительно больше единицы. Действительно, в соответствии с принципом фотохимической эквивалентности Эйнштейна, число свободных радикалов, образующихся в результате фотохимической реакции, равно удвоенному числу поглощенных квантов света. [c.280]

    При химических исследованиях количества вещества выражают в молях, содержащих 6,023-молекул. Соответственно этому удобной единицей измерения энергии в фотохимии является Эйнштейн, равный 6,023-1023 квантов при данной длине волны. [c.133]

    Квантовый выход в обычных фотохимических процессах должен быть равен или меньше единицы. Это следует из принципа фотохимической эквивалентности Эйнштейна, согласно которому поглощение кванта света может вызвать только одну первичную реакцию. В то же время поглощение света не обязательно приводит к химическому превращению. Образовавшаяся в результате поглощения света возбужденная частица может перейти в основное состояние с испусканием кванта света (флуоресценция или фосфоресценция) или в результате превращения (конверсии) энергии электронного возбуждения в энергию колебания. [c.252]


    Суммирование потерь энергии на всех частицах цепи и затем на всех цепочках в единице объема дает величину диссипации на структуре Складывая ее с потерями в среде и на несвязанных частицах, определяемых формулой Эйнштейна = Ло (I + ф) V . можно найти полную диссипативную функцию д у) структурированной системы и далее величину сдвиговых напряжений х = д(у)/у. [c.209]

    Одним из наиболее характерных признаков цепного механизма является высокий квантовый выход при фотохимическом инициировании. Согласно принципу фотохимической эквивалентности Эйнштейна, поглощение одного кванта света может вызвать только одну первичную реакцию. Квантовый выход вычисляется как число молекул продукта реакции, образовавшихся при поглощении одного кванта света. Это число в цепных реакциях во много раз больше единицы. [c.351]

    Для многих процессов квантовый выход значительно отличается от единицы (табл. 6.7). Отличие величины от единицы не означает отклонения от закона фотохимической эквивалентности Эйнштейна, а связано с вторичными процессами, которые идут без поглощения света. [c.288]

    Отличие величины ф от единицы не означает отклонения от закона фотохимической эквивалентности Эйнштейна, а связано с вторичными процессами, которые идут без поглощения света. [c.242]

    Для достаточно разбавленных растворов коэффициент активности стремится к единице, и уравнение (VII.20) переходит в уравнение Эйнштейна. [c.143]

    Энергетический эквивалент дефекта массы может быть найден по соотношению Эйнштейна Е = тс . Так как одна атомная единица массы равна 1,661-10 г, то энергетический эквивалент ее равен Е = (1,661 10 )-(2,998-10 ) эрг или Е = 1,493-10 эрг. [c.390]

    Следует подчеркнуть, что отклонения квантового выхода от единицы не связаны с отклонением от закона фотохимической эквивалентности Эйнштейна. [c.201]

    Вероятность перехода можно рассматривать как число энергетических переходов в единицу времени. Коэффициент Эйнштейна В01 характеризует вероятность возбуждения соответствующей системы. [c.180]

    Коэффициент, равный отношению числа фотонов, испускаемых за единицу времени в результате воздействия излучения плотности p(v,i), т. е. при вынужденных переходах с верхнего уровня Ei на нижний Ей, к числу частиц, находящихся на верхнем уровне Ei, на единицу плотности излучения, называют коэффициентом Эйнштейна для вынужденного испускания, а произведение Si p(Vi4) — вероятностью вынужденного испускания. Между коэффициентами Aik и Bki существует важное соотношение [c.8]

    Масса ядра всегда меньше суммы масс нуклонов, входящих в это ядро. Разность между массами ядра и нуклонов называют дефектом массы. Например, масса изотопа гелия равна 4,0015 атомных единиц массы (а.е.м), в то время как сумма масс двух протонов и двух нейтронов составляет 4,0319 а.е.м., соответственно дефект массы равен 0,0304 а.е.м. Дефект массы определяет устойчивость атомных ядер и энергию связи нуклонов в ядре. Он соответствует энергии, которая выделяется при образовании ядра из протонов и нейтронов и может быть рассчитана по уравнению Эйнштейна  [c.399]

    Количество вещества (в молях) не пропорционально массе, так как массы молекул одного и того же вещества, даже без учета различного изотопного состава, находясь в разных энергетических состояниях, имеют различную массу (с учетом соотношения Эйнштейна т=Е1с ). Поэтому количество вещества — моль — новая единица, принципиально отличная от массы. [c.32]

    Возбужденные частицы должны терять энергию, поэтому в соответствии с законом Штарка — Эйнштейна сумма квантовых выходов для всех первичных процессов, включая дезактивацию, должна быть равна единице. Это хорошо подтверждается в тех случаях, когда имеется достаточный объем экспериментальных данных. [c.20]

    Идея многоквантовых процессов на первый взгляд кажется противоречащей основам квантовой теории. Эйнштейн показал, что наблюдающийся фотоэлектрический эффект согласуется с представлением об излучении как о потоке фотонов, чья энергия определена частотой или длиной волны интенсивность излучения измеряется числом фотонов (в единицу времени), но не влияет на энергию каждого отдельного фотона. Подобные рассуждения применимы и к фотохимическим изменениям. Приведенный в разд. 1.2 закон Штарка — Эйнштейна служил следующим подтверждением идей квантования. Только один фотон необходимо поглотить частице, чтобы вызвать ее различные фотохимические превращения. Следовательно, фотоны с энергией меньшей, чем необходимо для какого-то определенного превращения, например диссоциации, не могут быть эффективны, как бы ни была высока их интенсивность. Очевидно, что если частота излучения не соответствует разнице между двумя энергетическими уровнями молекулы или атома, то поглощение и, следовательно, реакция не могут произойти. Однако в последнее время выполнено большое число экспериментов, [c.73]


    В СИ за единицу энергии принимается джоуль (м Кг/с=). Очевидно, в уравнении Эйнштейна энергия выразится в джоулях, если массу выразить в килограммах, а скорость света — в м/с (3-10 м/с). [c.16]

    Скорость неразветвленной цепной реакции может быть значительно увеличена воздействием на систему физических агентов — света, ионизирующих излучений, способствующих возникновению свободных радикалов. При фотохимическом инициировании квантовый выход неразветвленной цепной реакции значительно больше единицы Действительно, в соответствии с принципом фотохимической эквивалентности Эйнштейна число свободных радикалов, образующихся в результате фотохимической реакции, равно удвоенному числу поглощенных квантов света. Согласно (VII.19) на каждый появившийся в системе свободный радикал образуется большое число молекул продуктов цепной реакции. Поэтому квантовый выход, определяемый как число молекул продукта реакции, образовавшихся на один поглощенный квант света, оказывается много больше единицы Высокий квантовый выход является одним из наиболее характерных признаков цепного механизма реакции. [c.368]

    При химических исследованиях количество вещества измеряют в молях, содержащих 6,023-10 молекул. Соответственно этому удобной единицей измерения энергии Б фотохимии является Эйнштейн, равный энергии 6,023-10 квантов при данной длине волны. [c.246]

    Для измерения числа квантов света используются квантовые счетчики, которые измеряют фотонный поток независимо от того, какой энергией обладают фотоны. Следовательно, такие счетчики можно прокалибровать так, чтобы они давали показания непосредственно в единицах (эйнштейн-с ). Квантовый счетчик состоит из кюветы с раствором флуоресцирующего вещества [c.252]

    По современной теории броуновского движения, созданной Эйнштейном и Смолуховским , оно имеет молекулярно-кинетическую природу, т. е. является следствием теплового движения молекул дисперсионной среды. Если частица дисперсной фазы достаточно мала, то под действием ударов, наносимых ей молекулами среды со всех сторон, она будет перемещаться в разных направлениях. Число ударов, которые испытывает частица, огромно, и поэтому частица при своем перемещении постоянно меняет направление и скорость. Путь частицы измерить невозможно и обычно определяют расстояние, на которое она смещается в единицу времени. Для количественных расчетов берут не само смещение, а его проекцию Дл (рис. 76). [c.190]

    В настоящее время согласно Международной системе СИ за единицу энергии принимается джоуль, имеющий размерность м -кг/сек . Очевидно, в уравнении Эйнштейна энергия выразится в джоулях, если массу выразить в килограммах, а скорость света в м сек (3 10 л/сек). [c.19]

    В выражении (3.39) на основании формулы Планка — Эйнштейна (2.1) можно перейти к энергетическим единицам  [c.46]

    Однако отклонение квантового выхода от единицы не означает отклонения от закона фотохимической эквивалентности. Как показывает опыт, фотохимический процесс слагается из первичного процесса, протекающего в результате поглощения светового кванта, и, как правило, приводящего к диссоциации молекулы и образованию свободных атомов и радикалов, и из вторичных процессов, протекающих в результате вступления в реакцию образовавшихся в первом процессе атомов и радикалов. Вторичные процессы могут сводиться к дезактивации возникших в результате поглощения света молекул или к рекомбинации атомов и радикалов. Первичные фотохимические процессы, являющиеся истинно фотохимическими, всегда подчиняются закону эквивалентности 111тарка — Эйнштейна. Таким Образом, отклонение квантового выхода от единицы означает не отклонение от закона эквивалентности, а появление вторичных процессов, которые, изменяя величину квантового выхода, идут уже без поглощения света. [c.233]

    С другой стороны, стерический коэффициент при рекомбинации радикалов в жидкости, по-видимому, почти всегда может быть принят равным единице. Обусловлено это следующим. Время столкновения в газовой фазе —продолжительность соударения двух частиц — имеет порядок 3-10 с. Чтобы радикал продиф-фундировал из клетки на расстояние порядка молекулярного диаметра л = 5-10 см при коэффициенте диффузии его О ж 5- 10 см -с , требуется время т, которое можно определить из уравнения Эйнштейна — Смолуховского = 20х)  [c.114]

    Статистике Бозе — Эйнштейна подчиняются частицы, подобные фотонам, которые имеют спин, равный единице, или другому целому числу. В этой, статистике распределение отличается преобладанием частиц с малой энергией с увеличением энергии 8 наблюдается резкое уменьшение числа частиц N . Если выполняется условие [c.169]

    Таким образом, при высоких температурах (т. е. при больших Г/10) функция Планка — Эйнштейна стремится к единице и вклад в молярную теплоемкость от каждого вида колебаний стремится кПри низких температурах функция ф(Г/0) стремится к нулю. Подчеркнем, что квантование вращательных степеней свободы начинает играть заметную роль лишь вблизи абсолютного нуля. [c.68]

    Четвертый основной закон фотохимии называется принципом фотохимической эквивалентности Эйнштейна. Этот закон гласит, что каждый поглощенный квант активирует одну молекулу. Число квантов, поглощенных в единицу времени, равно Ilhw Поэтому по принципу эквивалентности Эйнштейна за единицу времени должно было бы активироваться светом и [c.270]

    Осмотическое давление любого раствора зависит от количества растворенных частиц и не зависит от их природы и величины. В коллоидных системах число частиц в единице объема много меньше числа молекул растворенного вещества в единице объема истинного раствора. А. Эйнштейн на основе проведенных расчетов показал, что при одинаковых частичных концентрациях в сильно разбавленном растворе молекулы и взятые в равном количестве микроскопические и ультрамикроскопиче-ские частицы создают одинаковое осмотическое давление л. Так как величина этих частиц значительно больше, то при равных массовых концентрациях осмотическое давление, создаваемое ими, существенно меньше. [c.404]

    Эйнштейна для поглощения Bui, а произведение Виф т), пропорциональное доле частиц, [юглощающих фотоны частоты vm, представляет собой вероятность поглощения. Поглощение фотонов всегда есть процесс вынужденный, поэтому коэффициент Эйнштейна определяется на единицу плотности поглощаемого излучения. [c.8]

    Рассмотрим два уровня атомной (нлн молекулярной) системы 1 и 2, причем Eiатом первоначально находился на уровне 2, то его спонтанный переход на уровень 1 сопровождается потерей атомом энергии Ео—Ей которая поступает в окружающее атом пространство в виде кванта энергии /iv2i, где V21—частота, соответствующая выделивщемуся кванту электромагнитной волны. Скорость спонтанного испускания в единице объема равна (dN2 dt)=—Л21 Л г, где Л21 — коэффициент, называемый коэфф1щиентом Эйнштейна для испускания (выражен в с ), а N2 — концентрация атомов на уровне 2. [c.189]

    Знак плюс отвечает статистике Бозе — Эйнштейна, а минус — статистике Ферми — Дирака. Так как при высоких температурах обе статистики должны перейти в статистику Больцмана, то величина А должна увеличиваться с ростом температуры таким образом, чтобы можно было пренебречь единицей в знаменателе правой час- [c.169]

    Если пространство около черного тела не заполнено излучением, то тело начнет излучать. При каждой температуре существует некоторое равновесное излучение, энергия которого также зависит от температуры. Поэтому существует теплоемкость пустоты. Как будет показано дальше, теплоемкость пустоты растет пропорцпонально кубу температуры, поэтому ири температурах порядка миллионов градусов оиа будет выше теплоемкости твердого тела того же объема. Важно знать как энергию черного тела, так и распределение ее ио частотам. Мы можем получить эти вах<ыые характеристики на основе представлений о фотонном газе. Как уже отмечалось, энергия осциллятора равна /iv. Оказывается, что при испускании или излучении п может меняться только на единицу. Поэтому излучаемая порция энергии равна /IV. А. Эйнштейн впервые указал, что между актами испускания и поглощения эта порция энергии существует в виде кванта энергии — фотона. Таким образом, излучение можно рассматривать как фотонный газ. Так как фотон движется со скоростью света, то его характеристи-ти должны описываться теорией относительности, согласно которой [c.171]

    В 1905 г. А. Эйнштейн установил закон фотохимической эквивалентности каждая молекула, реагирующая иод влиянием света, поглощает только один квант излучения hv, который вызывает ее превращение. Система, в которой прореагировало N молекул, должна получить Nh квантов, т. е. энергию E=Nhv. Отношение числа фактически прореагпровавших молекул к числу поглощенных квантов называется квантовым выходом. Если эта величина меньше единицы, т. е. число поглощенных квантов больше числа распадов, то часть лучистой энергии превращается в тепловую. Во многих фотохимических реакциях квантовые выходы очень велики. Так, в реакции образования НС1 квантовый выход имеет норядок 10- . Это наблюдение привело к идее цепного механизма реакций, при котором фотохимический акт лишь начинает цепь п не играет роли в дальнейшем развитии процесса. Действительно, реакция Н2(г)+СЬ(г) =2СН1(г) начинается через короткое время после освещения смеси, а затем продолжается в темноте. Механизм такой реакции может быть представлен следующей схемой СЫ-/гг = ==2С1 С1+Н2 = НС1+Н Н+СЬ = НС1 + С1 и т. д. [c.246]


Смотреть страницы где упоминается термин Эйнштейн единица : [c.7]    [c.96]    [c.363]    [c.19]    [c.85]    [c.117]   
Общая химия ( издание 3 ) (1979) -- [ c.10 ]

Основы биохимии Т 1,2,3 (1985) -- [ c.689 ]




ПОИСК





Смотрите так же термины и статьи:

Эйнштейна

Эйнштейний



© 2025 chem21.info Реклама на сайте