Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализатор бутенов

    В работе [53] импульсным хроматографическим методом была изучена скорость восстановления серии окисных катализаторов бутеном-1 и бутадиеном. Объем импульса составлял 1,1 мл бутена-1 или бутадиена. В микрореактор помещали около 1 г окисного катализатора. В табл. VI.5 приведены характеристики исследуемых окислов и основные результаты. [c.289]

    I — предварительный подогреватель 2 — реактор о катализатором 3 — компрессор 4 — абсорбер 5 — испаритель. Линии I — и-бутан II — тощее масло III — На -Ь наиболее легкие углеводороды IV — к-бутан 4- н-бутен (циркуляция) V—бутадиен VI — жирное масло. [c.90]


    Тиофен может получаться из бутапа или бутенов взаимодействием их с двуокисью серы над катализатором окись молибдена — окись алюминия или окись хрома — окись алюминия. Из высокомолекулярных парафиновых углеводородов наряду с тиофеном получаются алкилтиофены. В табл. 67 даны некоторые примеры этого. Тиофен и алкилтиофены могут получаться нри помощи названных выше катализаторов дегидрирования также из парафиновых углеводородов и сероводорода. [c.146]

    Тиофен, который в последние годы производится в промышленных масштабах, также легко может алкилироваться каталитическим путем. Алкилирование тиофена бутенами или пентенами, а так>ке исключительно пригодным для этого циклогексепом может осуществляться пропусканием тиофена и олефинов или циклоолефинов над катализатором кремневая кислота — окись алюминия при 200° или над твердой фосфорной кислотой, как было выше описано для получения кумола, или также с серной кислотой. [c.231]

    Чисто термическим путем, т. е. только нагревая парафиновые углеводороды до высокой температуры, нельзя их изомеризовать. Шульце и Веллер [8] крекировали н-бутан и изобутан при 700° и 0,32 сек. времени пребывания газов в нагретой зоне, получив около 20% продуктов разложения. В продуктах крекинга н-бутана нельзя было обнаружить ни изобутана, ни изобутилена, и, наоборот, в газах крекинга изобутана н-бутан или н-бутен отсутствовал. Отсюда следует, что для изомеризации необходимо присутствие катализатора. [c.514]

    Превращение бутена-1 в бутон-2 происходит при прохождении первого над силикагелем [63], пропитанным 40%-ной серной кислотой при температуре около 90 или 75%-ной серной кислотой при 120° [34]. При использовании в качестве катализатора окиси хрома бутен-1, как сообщают [49], превращается при температурах от 249 до 262° на 82% в бутен-2. Установлено также, что диатомитовая земля, пропитанная фосфатом аммония при 300°, также является эффективным катализатором [62]. [c.104]

    Добавление пятиокиси ванадия к катализатору фосфорная кислота на кизельгуре увеличивает ее полимеризирующую активность по отношению к бутену-1 [41]. Этот катализатор готовился нагреванием при 200° смеси 90 % ортофосфорной кислоты (82 г) и 1 з пятиокиси ванадия, полученной нагреванием метаванадата аммония нри температуре 440—450° в течение 20,5 часа, с последующим нагреванием полученной таким образом смеси с 18 3 кизельгура. Второй катализатор без добавления пятиокиси ванадия приготовлялся таким же образом. Бутен-1 пропускался через кварцевую реакционную трубку, содержавшую 87 з каждого ката- [c.200]


    Ввиду легкости взаимного превращения бутенов-1 и -2 становится ясным, что соответствующие выходы бутенов-1 и -2 не обязательно должны соответствовать присоединению водорода в положения 1,2 и 1,4, так как вслед за реакцией присоединения водорода происходит перегруппировка первоначально образовавшихся продуктов до того, как они десорбируются с поверхности катализатора. Такая же возможность существует и при гидрогенизации других сопряженных систем. [c.244]

    Для псследования равновесня реакции изомеризации бутенов Серебрякова и Фрост [3] применили в качестве катализатора фосфорную кислоту, нанесенную на шамот. Авторы установили, что прл телшературах 265—426° С для подавления побочных реакций полимеризации олефинов необходимо к смеси реагирующих газов добавлять некоторое количество водяного пара. [c.307]

    Алкилирование включает реакции изопарафинов, главным образом изобутана с пропиленом, бутеном и пентенами для получения высокооктанового бензина. Реакция протекает в жидкой фазе, катализатором служит либо фтористый водород, либо серная кислота. Алкилирование при участии фтористого водорода проводят при 29—37 °С отношение количеств кислоты и углеводорода 1 5 отношение изобутана к олефину, равное 1 7, поддерживается путем рециркуляции концентрация кислоты 85—95% расход кислоты 1,4—2,3 кг/м алкилатов. [c.334]

    Одним из первых применений недеструктивных процессов было производство устойчивых к смолообразованию высокооктановых авиационных бензинов. Гидрированию подвергались диизобутилен и соответствующие содимеры, полученные при полимеризации бутенов [198]. Полимеризация проводилась при воздействии сначала холодной или горячей серной кислотой, а затем крепкой фосфорной кислотой. Фосфорная кислота высушивалась на кизельгуре и т. д. Гидрирование происходило при мягких условиях с легко отравляющимися серой никелевыми катализаторами или, ири более высоких температуре и давлении, — с более стойкими к сере катализаторами. Продуктами гидрирования были высоко-разветвленные октаны, очень близкие к изооктану. [c.94]

    Хлоранизол, бу-тен-2 4-втор-Бутил-2-хлоранизол ВРз НзР04 60° С, 3,5 ч, затем 20—25°, 12 ч, 2-хлоранизол катализатор бутен-2 = = 3 1 0,2 (мол.). Выход 96,1% [180] [c.136]

    При алкилировании изобутана бутеном-2 и изобутиленом на основании описанного механизма в алкилате накапливаются главным образом трнметилпентаны 2,2,3- 2,2,4- 2,3,3- 2,3,4-, Эти же углеводороды накапливаются и при алкилировании изобутана бутеном-1. В рассмотренном выше механизме это не находит объяснения. Вероятнее всего под влиянием кислотного катализатора бутен-1 изомеризуется в бутен-2, так как миграция двойной связи весьма характерна в присутствии этого типа катализаторов. [c.323]

    Импульсным нехроматографическим методом изучено восстановление промышленного хром-железо-цинкового катализатора бутеном-1. При температуре 350° катализатор обладает способностью отдавать до одного монослоя поверхностного кислорода, который расходуется на превращение бутена-1 по схеме окислительного дегидрирования. Реакция сопровождается значительной прочной хемосорбцией (л теиа- . Предполагается, что наблюдаемое изменение активности и избирательности хром-железо-цинкового катализатора обусловлено частичным восстановлением его поверхности в ходе реакции. [c.127]

    Этот катализатор пригоден также для дегидрирования к-бутана в к-бутен. Тепло для дегидрирования подводится извне путем нагрева заполпснных катализатором трубок. В процессе Стандард Ойл дегидрирование бутенового концентрата происходит над специальным катализатором [5], устойчивым против действия водяного пара (рис. 41). При этом уже не требуется наружный обогрев. Теплоносителем является применяемый в большом избытке водяной пар преимуществом является то, что очень сильно понижается парциальное давление бутена, а это благоприятствует протеканию дегидрирования как равновесной реакции [c.85]

    В бутадиеновом процессе Филлипса исходный материал — бутан — па первой ступени дегидрируется в бутен, который на второй ступени превращается в бутадиен. Вторая ступень работает практически так же, как первая, т. е. с катализатором 01 ись хрома — окись алюминия, который находится в обогреваемых снаружи трубках. Дегидрирование на второй ступени идет при температуре около 670°, т. е. примерно на 140° выше, чем на первой ступепи. Водяной пар подается в значительно меньшем количестве, чем в процессе Стандард Ойл. Здесь он не является теплоносителем, а служит лишь средством понижения парциального давления и уменьшения отложения кокса па катализатор. [c.86]

    Процесс протекает следующим образом. к-Бутаи и к-бутеи из газов циркуляции проходят над катализатором, дегидрирующим к-бутап в / -бутен, а к-бутен в бутадиен (рис. 42). После быстрого охлаждения газ компримируется и, как обычно, путем абсорбции освобождается от водорода и низко-молекулярных продуктов крекинга. Выделенная из абсорбента фракция С4 для извлечения 8—12% бутадиена обрабатывается на экстракциошюй установке аммиачно-ацетатным раствором меди. Отделяющаяся смесь к-бутана и к-бутена (газ циркуляции) вместе со свежим к-бутаном возвращается в реактор для дегидрирования. [c.87]


    Кумол может получаться так же, как и этилбензол, а именно реакцией пронена с бензолом, смешанным с хлористым алюмпннсм. Во время войны, когда чистоте кумола придавалось не столь большое значение, как теперь, когда кумол применяется в качестве исходного продукта для получения фенола и ацетона, алкилирование бензола пропеном в присутствии фосфорнокислого катализатора под давлепием проводилось в такой же аннаратуре, в какой осуш,ествлялась каталитическая полимеризация газов стабилизации крекипг-устаповок (смесь пропепа и бутенов) для получения полимер-бензола. [c.230]

    Исходный пропилен должен быть очнь чистым 099,5%), ни в коем случае не должен содержать азотных, фосфорных и серных соединений и ацетиленов. Этот метод дает выход в единицу времени на единицу объема около 100 катализатор, о котором подробных сведений не имеется, необходимо регенерировать каждые 2—10 дней. Исходным продуктом могут служить также и смеси пропан — пропилен. При использовании чистого пропилена конверсия составляет 43—44%, селективность 94—98%. После перегонки получаются очень чистые продукты 99,8%-ный этилен и 96,4%-ный бутен-2 (наряду с 3,46% бутена-1). Бутен-2 можно либо подвергнуть алкилированию, либо дегидрировать в бутадиен. В настоящее время бутен-2 в основном и используется для получения бутадиена. Дегидрирование можно осуществлять термически или лучше каталитически (выход 76,9%) [13] присутствие бутена-1 при этом нежелательно [14-16]. [c.327]

    Пиро.т1из 1-хлорбутана при 550° приводит к получению одного лишь 1-бутена. 2-хлорбутан, напротив, при 500° превращается на одну треть в 1-бутен и на две трети в 2-бутен. Термическое разложение обоих хлоридов в присутствии хлористого кальция (450°) позволяет получать в основном 2-бутен [135]. Хлорированный твердый парафин, как сообщалось [ИЗ], может быть количественно дехлорирован прп нагреванни до 300°. Окись алюминия нри 350° является эффективным катализатором для реакции отщепления галоидоводорода. Так, из инобутилхлорида над окисью алюминия был получен изобутилен с выходом 95% [119]. Этот катализатор оказался наиболее активным при дсгидрохлорировании хлорнроизводных нентана, гексана и гептана [39]. [c.419]

    Бтио/з-бутилбензол готовился в большом количестве конденсацией бутена-2 с бензолом в автоклаве (нагретом до 150 в теченне 12 час.) в присутствии таблетированного катализатора, содержавшего адсорбированную фосфорную кислоту (твердый фосфорнокислый катализатор). Отношение беизола к бутену-2 равнялось 2,5 1 выход неочищенного ето/ -бутилбензола в среднем составлял 70 %i или 45% после перегонки и доведения его до 98—99 %-ной степени чистоты. Тот же катализатор оказался пригодным для конденсации этилена с толуолом при температуре 275° и давлении 35—91 ат при этом получалась смссь этилтолуолов (выход 63%). Состав смеси полностью ие определялся, но было найдено, что в ней содержалось около 50% о /гео-изомера. Фосфорная кислота непригодна в качестве катализатора для приготовления [c.481]

    Товарные алкилаты, получаемые большей частью путем низкотемпературного каталитического алкилирования бутенов изобутаном, являются целиком парафиновыми углеводородами. В противоположность бензинам прямой гонки и крекинг-бензинам парафиновые углеводороды алкилатов сильно разветвлены и представлены, главным образом, триметилпента-нами. Как показывает табл. I, состав их зависит от катализатора, примененного для алкилирования (Глазго и др. [3]). [c.48]

    В процессе Гудри [2, 40, 80, 88] для дегидрирования используется тепло, аккумулированное катализатором и инертным веществом катализатора. Процесс ведется над алюмохромовым катализатором, обработанным предварительно в течение 10 часов водяным паром при 760° С и смешанного с двухкратным количеством алунда [30, 31]. При продолжительности дегидрогенизационного цикла от 7 до 15 минут наблюдается снижение температуры на 50° С, после чего температура снова повышается путем выжига углерода на катализаторе неразбавленным воздухом. Путем соответствующего подбора условий можно добиться теплового равновесия между теплотой реакций и теплотой регенерации катализатора. При применении в качестве сырья к-бутана процесс может быть направлен па получение как бутиленов, так и бутадиена. Установка может работать при малых давлениях (порядка 127 мм рт. ст.), необходимых для получения хороших выходов бутадиена. Температура процесса устанавливается от 566 до 593° С, и объемная скорость от 0,8 до 2,0. В настоящее время завод в Эль-Сегундо (штат Калифорния) максимально развивает производство бутенов как сырья для последующего превращения в бутадиен посредством процесса Джерси (описанного ниже). [c.199]

    Описание процесса Гудри приведено в разделе, посвященном производству моноолефинов. Принимая во внимание то обстоятельство, что завод в Эль-Сегундо в настоящее время производит главным образом бутены, превращаемые затем в бутадиен посредством процесса Джерси, можно считать процесс Гудри наиболее пригодным для получения бутенов. Принятый на заводе двухступенчатый процесс производства бута-диенов аналогичен процессу, применяемому фирмой Филлипс Петролеум Ко . Первая стадия процесса фирмы Филлипс Ко заключается в дегидрировании бутанов над алюмохромовым катализатором до бутонов, вторая — в дегидрировании разбавленных водяным паром бутенов до бутадиена. Первоначально вторая стадия проводилась на промотирован-ном бокситовом катализаторе, а затем на более эффективном катализаторе, описанном дальше. Проектная и действительная производительности наиболее крупных заводов по производству бутадиенов путем дегидрирования приведены в табл. 12. [c.200]

    Рилли детально рассмотрел всо преимущества и недостатки пикеле-вого катализатора, однако пока еще трудно решить, заменит ли этот катализатор железные катализаторы, промотированные KjO. Преимуществом никелевого катализатора является ого способность давать высокие выходы бутадиона с наименьшими потерями бутонов, что особенно важно в случао уменьшения производства бутенов или при увеличении их стоимости. Однако этот катализатор обладает меньшей механической прочностью и, кромо того, иногда наблюдаются резкие нарушения в ого работе, сонровоагдаемыо образованием большого количества кокса и газа и разрушением таблеток катализатора. Кроме того, перевод заводских установок на катализатор Дау потребовал бы дополнительных финансовых затрат. В настоящее время нет возможности точно предсказать характер ближайшего развития нефтехимической промышленности в отношении [c.203]

    Продукты дегидрирования бутена. Конверсия бутенов до бутадиена увеличивается при увеличении температуры и уменьшении скорости подачи сырья. С увеличением глубины конверсии избирательность к бутадиену уменьшается, так как в этом случао процесс сопровоя дается образованием больших количеств газообразных продуктов крекинга, окиси углерода и кокса. При этом зависимость избирательности от глубины конверсии для катализаторов 1707 и 105 больше, чем для никелевого катализатора. [c.204]

    Стирол может быть нолучен дегидрированием этилбензола точно таким же образом, каким получается бутадиен из н-бутенов. Для обоих видов углеводородов могут быть использованы аналогичные катализаторы и технологические схемы, причем дегидрирование этилбензола происходит легче, чем дегидрирование бутона. В связи с повышенной реакционной способностью этилбензола, ого дегидрирование можно проводить пад катализаторами, пе достаточно пригодными для дегидрирования бутенов, и установки по производству стирола функционировали до того, как были получены катализаторы, пригодные для промышленного производства бутадиена. [c.206]

    По-видимому, основные причины того, что разные авторы получали несколько различающиеся результаты, заключаются н том, что применялись катализаторы различной природы, приготовленные разными мето-дамп, а сырье подапалось с неодинаковой объемной скоростью. Если исходить нз бутена-2, равновесие его с бутеном-1 быстро достигается при температуре 450 ° па активированной окиси алюминия марки Алорко сорта А, если же брать в качестве исходного вещества бутен-1, то равновесный состав достигается в течение 30 сек. Этот катализатор, вероятно, не является кислотным [50]. [c.104]

    При хлорировании этилена реакция замещения дихлорэтилена с образованием трихлорэтана является индуцированной , она ингибитируется кислородом. Дихлорэтилен хлорируется с трудом, если не считать реакции присоединения хлора к этилену. Присутствие 1 % кислорода в смеси хлора с этиленом замедляет реакцию замещения, но полностью ее пе прекращает. Тот же эффект отмечен при хлорировании пропилена и смеси н-бутана с бутеном-2 [30]. Даже в присутствии катализаторов кислород сильно ингибитирует реакции замещения в жидкой фазе. [c.365]

    В работе Кэрти и Туркевича [25] равновесие было достигнуто в присутствии катализатора окиси алюминия. Общее содержание цис -Ь транс) бутенов-2 в равновесной смеси было найдено равным 78,5 1,5 и 75,5 1,5% при температурах 400 и 450° С соответственно. [c.308]

    Изомеризация нормального пентана и гексана в изопарафины приводит к значительному повышению октанового числа. Процесс аналогичен каталитическому риформингу бензино-лигроиновых фракций. В качестве катализатора применяется платина или другой металл платиновой группы на пористом носителе. Условия проведения процесса температура в пределах от 370 до 482 °С, давление от 21 до 49 ат. Бутан превращается в изобутан, который используется как исходное сырье для алкилирования или конверсии в бутен. В качестве катализатора применяется нерегенерируе-мый хлористый алюминий, растворенный в треххлористой сурьме. Температура процесса около 93 °С, давление 21 ат, отношение расходов катализатора и бутана равно 1 1, время контактирования 10—40 мин в жидкой фазе. [c.337]

    При полимеризации бутена и изобутена в смесь изооктенов ( кодимер — т. е. диизобутилен) применялась в качестве катализатора горячая серная кислота или твердая фосфорная кислота. Последняя представляла собой прокаленное соединение фосфорной кислоты и кизельгура. После гидрирования кодимера получали гпдрокодимер , т. е. смесь изооктанов. Гидрокоди-мер в то время являлся ценной составной частью бензина для военной авиации. Сейчас ни кодимер ни гидрокодимер пе производятся. Позднее па установки полимеризации стали направлять в качестве сырья смеси пропенов и бутенов. [c.57]


Смотреть страницы где упоминается термин Катализатор бутенов: [c.485]    [c.182]    [c.120]    [c.235]    [c.63]    [c.67]    [c.233]    [c.413]    [c.440]    [c.201]    [c.202]    [c.104]    [c.105]    [c.106]    [c.244]    [c.326]    [c.345]    [c.307]   
Химия и технология основного органического и нефтехимического синтеза (1988) -- [ c.420 ]




ПОИСК





Смотрите так же термины и статьи:

Бутен

Бутен L Бутен

Бутенил



© 2025 chem21.info Реклама на сайте