Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гриньяра групп

    И В оловоорганическом галогениде, и в реактиве Гриньяра группы R могут быть как алифатическими, так и ароматическими. Вообще, выходы оловоорганических соединений, получаемых этим методом, вполне удовлетворительны. Обычным растворителем является эфир в некоторых случаях, если К является большой группой, к эфиру добавляют бензол или толуол. В последнее время в качестве растворителя был предложен тетрагидрофуран [648, 694, 724, 728, 739, 760, 761, 769]. Этот метод применяется весьма широко [52, 72, 79, 94, 167, 223, 235, 237, 239 240, 284, 364, 365, 380, 381,391,402,464,468,470,473,474,477,490 510, 562, 563 565, 572, 608, 632, 641, 646, 648, 649, 665, 672 694, 724, 728, 739, 760, 761, 764, 766, 767, 769, 794, 889. 901, 903 908]. Последовательное введение двух различных групп посред ством реактива Гриньяра является трудным делом и в большин стве случаев невозможно [724]. [c.44]


    В. Галоидные бензилы особенно реакционноспособны с магниевыми или с другими реактивами Гриньяра, что позволяет осуществить некоторые полезные синтезы. Галогениды можно классифицировать на две группы. [c.478]

    Амины получаются также аминолизом алкилхлоридов. При взаимодействии алкилхлоридов с сульфатами образуются водорастворимые сульфонаты. На основе алкилхлорида получают соединения Гриньяра, из которых при взаимодействии с оксидом углерода (IV) образуются карбоновые кислоты. При взаимодействии с безводным карбонатом натрия алкилхлориды превращаются в сложные эфиры, с сульфгидратами щелочей—в тиоспирты. В реакции Фриделя— Крафтса алкилхлориды взаимодействуют с аренами. Они дехлорируются с образованием алкенов. Алкилхлориды используют для введения в молекулы высокомолекулярных алкильных групп при производстве инсектицидов и ядохимикатов, для повышения растворимости полученных соединений в смеси углеводородов (нефтепродуктов), а также во многих других производствах. Термическим хлорированием технического пентана получают амилхлориды, которые гидролизуют затем щелочью в амиловые спирты, используемые непосредственно или в виде их амилацетатов в качестве растворителей и важного вспомогательного материала в лакокрасочной промышленности [18]. [c.325]

    Этот синтез интересен тем, что алкильная группа реактива Гриньяра удлиняется на две СН,- группы. [c.60]

    Магнийорганические соединения реагируют как нуклеофилы и с веществами, у которых дефицит электронной плотности находится не на атоме углерода, а на атомах других элементов. Например, при взаимодействии 0-алкилгидроксиламина, у которого на атоме азота есть некоторый дефицит электронной плотности, с избытком реактива Гриньяра наряду с другими соединениями образуется (после гидролиза) первичный амин (избыток реактива Гриньяра необходим потому, что он в первую очередь будет реагировать с группой ЫНг как основание)  [c.274]

    Взаимодействие реактивов Гриньяра с галогенами. При действии на арилмагнийгалогениды брома или иода группы MgX частично замещается на соответствующий галоген  [c.276]

    При проведении реакции карбонильное соединение постепенно вводят к заранее приготовленному реактиву Гриньяра, и, следовательно, в реакционной массе всегда имеется избыток последнего, поэтому есть основания предполагать, что на первой стадии реакции взаимодействует димер реактива Гриньяра (см. разд. 4.2). С одной стороны, с атомом углерода карбонильной группы реагирует как нуклеофил один из радикалов К, а с другой — по атому кислорода этой же карбонильной группы, на котором сосредоточена избыточная электронная плотность, координируется атом магния, имеющий дефицит электронной плотности. Это приводит к дополнительному увеличению положительного заряда иа атакуемом атоме углерода карбонильной группы. [c.278]


    Выход продукта восстановления можно снизить, если в реакционную смесь предварительно ввести эквимольное количество безводного бромида магния. Как было упомянуто выше, на атоме магния в этой соли имеется больший, по сравнению с реактивом Гриньяра, дефицит электронной плотности, так как атом магния в этом соединении обеими валентностями связан с более электроотрицательными, чем атом углерода, атомами брома. Поэтому он более прочно, чем реактив Гриньяра, координируется по атому кислорода карбонильной группы, ограничивая возможность гидридного перехода от -углеродного атома радикала )еактива Гриньяра к атому углерода карбонильной группы формула (36)], и тем самым повышает выход продукта нуклеофильного присоединения. [c.283]

    В предшествующий гидридному переходу момент образования шестичленного переходного комплекса стереоизомер реактива Гриньяра (36), в котором при асимметрическом атоме углерода имеется способный к гидридному переходу Р-атом водорода, может равновероятно атаковать атом углерода карбонильной группы, находящийся в состоянии хр -гибридизации, с обеих сторон плоской молекулы кетона  [c.285]

    Первая молекула реактива Гриньяра реагирует с фенилуксусной кислотой как основание, образуя соль, в которой атомы водорода метиленовой группы активированы двумя электроноакцепторными группами. Если в реактиве Гриньяра R —неопентил или изопропил, то вторая молекула его, реагируя как основание, отщепляет от этой соли протон, образуя енолят (44), который, как предполагают, через шестичленное переходное состояние реагирует с бензальдегидом по альдольному типу с образованием гидроксикислоты, имеющей два асимметрических атома углерода  [c.288]

    Вероятно, что на первой стадии взаимодействия всех приведенных выше производных кислот с реактивом Гриньяра происходит реакция нуклеофильного присоединения по карбонильной группе  [c.295]

    Уже при комнатных температурах аддукты (51), полученные из хлорангидрндов (Y = 1) и сложных эфиров (Y = OR"). подобно ацеталям и ортоэфирам, способны вступать в реакции нуклеофильного замещения по механизму Sn2 со второй молекулой реактива Гриньяра. Вытеснение в виде аниона группы Y [c.295]

    Если группа N связана с третичным атомом углерода, то при действии реактива Гриньяра она может быть вытеснена в виде аниона при этом образуется углеводород с четвертичным атомом углерода  [c.297]

    При избытке реактива Гриньяра идет со значительно меньшей скоростью реакция присоединения по карбонильным группам. [c.299]

    Нитрозогруппа является аналогом карбонильной группы. Так как электроотрицательность азота меньше, чем электроотрицательность кислорода, а кратная связь легче поляризуется, чем ординарная, то на атоме азота в нитрозогруппе имеется значительный дефицит электронной плотности, хотя и меньший, чем на атоме углерода в карбонильной группе. Поэтому нитрозобензол (подобно карбонильным соединениям) способен взаимодействовать с реактивами Гриньяра, например  [c.412]

    В этом случае, однако, придется дегидратировать третичный спирт в присутствии кислотного катализатора, что может привести к некоторой перегруппировке углеродного скелета в связи с нахождением третичного углерода в а-полошении к карбинольной группе. Точное установление строения вещества, даже если его удается очистить, будет затруднительным. По тем же спобран ениям не рекомендуется проводить реакцию между реактивом Гриньяра и бициклооктаноном, так как дегидратация образующегося третичного спирта может привести к изменс нию углеродного скелета [c.517]

    Следует отметить, что последняя реакция, и то с малым выходом, шла лишь при весьма чистом ацетюне, в противном случае наступала реакция полимеризации, и алкоголя не получалось. Далее, что из разветвленных гептанов 2,2-диметилпептанг и 3,3-диметил-пентан не удалось получить этим общим методом. Правда, соответственные ал-коголи были индивидуальными соединениями, но получившиеся из них олефины были смесями двух или нескольких изомеров, различавшихся положением не только двойной связи, но и метшшных групп. Поэтому для синтеза чистых индивидуальных 2,2-диметил-пентана и 3,3-диметилпентана пришлось прибегнуть к реакции Гриньяра-Вюрца. [c.52]

    К процессам магнийорганического синтеза относят целую группу процессов, например получения диолина С.201 реактива Гриньяра и многих других. Процесс получения реактива Гриньяра является представителем группы потенциально опасных процессов с большой скоростью протекания реакций. [c.200]

    Такие алкилфенолы имеют ряд особенностей, они, например, не реагируют с едкими щелочами [58] и металлическим натрием. Слабую химическую активность этих соединений обычно объясняют тем, что группа ОН экранирована изобутильными радикалами, и поэтому имеется пространственное затруднение для протекания каких-либо реакций с группой ОН. Однако более детальное изучение этого вопроса показывает, что такое объяснение явно недостаточно, так как тот же экранированный алкилами фенол легко реагирует с реактивом Гриньяра, молекула которого имеет большие размеры, чем молекула едкого натра. Любопытно, что и с металлическим натрием экранированный фенол не реагирует только в том случае, когда реакция ведется в растворе петролей-ного эфира, и достаточно легко реагирует, если вести реакцию в жидком аммиаке. В последнем случае образуется амид натрия NH2Na —сильное основание, который и реагирует с экранированной группой ОН. [c.305]


    Одна из самых важных реакций с использованием карбонильных соединений как электрофи.тов — реакция Гриньяра — присоединение магнийоргапических соединений ио карбонильной группе. Ре.зультат этих реакций — образование связи С—С и превращение карбонильной функции в спнртоиую. [c.85]

    Высокая общность и надежность такой реакции порождают стандартный прием ретросиитетического анализа — разборку целевой молекулы по фрагменту, содержащему спиртовую гидроксильную группу, что подразумевает сборку связи С—С, примыкающей к спиртовой функции, по реакции типа Гриньяра [c.86]

    Алкильная группа реактива Гриньяра ведет себя как нуклеофил и алакует уг леродный атом  [c.25]

    Вследствие электроположительного характера магния алкильная или арильная группа в реактиве Гриньяра ведет себя как нуклеофил. Это служит причиной легкого взаимодействия с протоносодержапщми соединениями и веществами с частично положительным углеродным атомом (напримф, карбонильным углфодом). [c.200]

    Присоединение реактивов Гриньяра. Непредельные кетоны, алкильные группы которых имеют большой объем, присоединяют реактивы Грнньяра не по карбонильной группе, а в положения 1,4, например  [c.86]

    Высокая реакционная способность аллил- и бензилгалогени-дов, а также а-галогензамещенных простых эфиров при взаимодействии с реактивами Гриньяра, по-видимому, обусловлена теми же причинами, которые были рассмотрены в гл. 2. По этим же причинам высокой реакционной способностью обладает и 2-хлорэтанол-1, в котором атакуемый атом углерода связан с электроноакцепторной группой СНгОН (-/-эффект группы ОН)  [c.269]

    При взаимодействии реактива Гриньяра с 1,2-эпоксипропа-ном образуется смесь спиртов с преобладанием вторичного, так как реактив Гриньяра предпочтительнее атакует атом углерода с большим дефицитом электронной плотности ( +/-эффект группы СНз)  [c.273]

    Восстановление карбонильных соединений реактивами Гриньяра применяют при проведении частичного асимметрического синтеза. Если использовать в реакции Гриньяра несимметричные кетоны, то при их восстановлении обрм-зуются спирты с асимметрическим атомом углерода. Естественно, что при этом получается рацемическая смесь обоих антиподов. Если же использовать оптически активный реактив Гриньяра, например (37), то образуется не рацемат, а смесь, содержащая небольшой избыток одного из стереоизомеров. Лучшие результаты были получены для кетонов, у которых один из радикалои сильно разветвлен (например, для пинаколина). При действии же на пинаколин оптически активным реактивом Гриньяра (38), отличающимся от предыдущего только на одну метиленовую группу, образуется рацемическая смесь антиподов. [c.284]

    Ранее было отмечено, что атом галогена в бензилхлориде под влиянием имеющей —/-эффект фенильной группы становится подвижнее, и это соединение способно реагировать с магнийорганическими соединениями по реакции типа реакции Вюрца. Казалось бы, увеличение числа фенильных групп у атакуемого атома углерода должно облегчать протекание этой реакции, и трифенилхлорметан должен был бы легко реагировать с реактивами Гриньяра с образованием 1,1,1-трифенил-алкана  [c.286]

    Однако оказалось, что при взаимодействии трифенилхлор-метана с этилмагниибромидом образуется не трифенилпропан, а трифенилметан и этилен. Это можно объяснить тем, что три-фенилметильная группа создает значительные пространственные препятствия для образования шестичленного переходного состояния с участием димера реактива Гриньяра, однако возмож- [c.286]

    Большую склонность к енолизации проявляют также жирноароматические кетоны с сильно экранированным атомом углерода карбонильной группы. Например, мезитилметилкетон даже при взаимодействии с таким компактным реактивом Гриньяра, как метилмагнийнодид, полностью енолизуется  [c.288]

    Этим можно объяснить, почему а, 5-непредельные альдегиды, у которых дефицит электронной плотности на атоме углерода карбонильной группы больше, чем на р-атоме углерода, реаги-])уют с магнийорганическими соединениями только по карбонильной группе. У а, -непредельиых кетонов взаимодействию реактива Гриньяра с атомом углерода карбонильной группы препятствует экранирование этого атома радикалом Н. Поэтому более выгодно присоединение реактива Гриньяра в положения 1,4 с образованием связи Н—С-4  [c.292]

    Реакции с производными карбоновых кислот. Аналогично карбонильной группе в альдегидах и кетонах, в производных карбоновых кислот R OY группа OY (Y = Hal, O OR, OR, NR2. ОМ) способна к присоединению реактивов Гриньяра, Реакционная способность производных карбоновых кислот зависит от величины частичного положительного заряда на атоме углерода карбонильной группы (которая в свою очередь зависит от М- и /-эффектов группы У) и уменьшается в ряду  [c.293]

    Атом водорода метинной группы в соединениях типа (52) также обладает протонной подвижностью (—/-эффект фенильной группы), поэтому реактивы Гриньяра и с ними взаимодействуют в первую очередь как основания с образованием реактивов Иванова (53)  [c.299]

    В отличие от бензола фуран. пиррол и тиофен имеют ди-польные моменты 0,70, 1,80 и 0,55 Д соответственно. Положительный конец диполя — гетероатом, а отрицательный — оттянувшая на себя р-электроны гетероатома уг.певодородная часть молекулы. Последнее можно утверждать на основании того, что эти гетероциклы легче, чем бензол, реагируют с электро-фильнт> ми реагентами. Дипольный момент пиррола несколько завышен, по-видимому, потому, что его положительный конец находится не на атоме азота, а на атоме водорода группы NH, имеющем наименьшую электроотрнцательность. Это можно подтвердить тем, что при действии щелочей или реактива Гриньяра этот атом водорода замещается на атом металла или остаток MgX. [c.311]

    Атом водорода в группе ЫН в индоле, как и в пирроле, обладает протонной подвижностью. При взаимодействии со щелочными металлами, алгоколятами и реактивами Гриньяра он образует металлические производные, которые используют для различных синтезов, например  [c.532]

    Первоначально идентичность УФ-спектров а- и -гидрокси-пйридинов со спектрами Л -метилпиридинов, которым отвечает единственная структура, позволила предположить, что в отличие от а- и у-аминопиридинов а- и у-гидроксипиридинам отвечают формулы (110) и (111). Однако впоследствии было показано, что реальным а- и у-гидроксипиридинам несвойственны реакции, характерные для карбонильной группы (они не реагируют с фенилгидразином и не присоединяют реактивов Гриньяра), а также для вторичной аминогруппы (они с трудом реагируют с СНз1 и не образуют солей четвертичных аммониевых оснований). На этом основании соединение (НО) следует скорее относить к амидам кислот, а соединение (Ш)—к ви-нилогам амидов кислот. В обоих соединениях взаимное влияние функциональных групп настолько велико, что обе они утрачивают характерные для каждой из них свойства. [c.549]

    О большей активности карбонильной группы по сравнению с активированной кратной связью в реакции с нуклеофилами свидетельствует тот факт, что при взаимодействии a, -Henpe-дельных альдегидов с реактивами Гриньяра образуются исключительно продукты присоединения по карбонильной группе [c.553]

    Н. Г. Росляковой была разработана методика одновременного количественного определения в силикагеле 510г и НгО. Силикагель последовательным промыванием абсолютным спиртом и ди-этиловым эфиром освобождали от молекул воды, связанных с егО гидроксильными группами водородной связью. Затем обрабатывали его реактивом Гриньяра  [c.186]

    Для исследования брали крупнопористый силикагель, очищенный от примесей, высушивали его при 180° С. Методом, основанным на реакции Гриньяра, а также взвешиванием после прокаливания при И 00° С определяли содержание в нем ОН-групп, которое для этого силикагеля составляло 3,48-Ь0,03 мг-экв/г. Обрабатывали силикагель тетрахлоридом титана при 180° С в токе сухого воздуха, несущем пары Ti U, до полного замещения всех доступных ОН-групп силикагеля, что достигалось благодаря притоку Ti U и удалению НС1 с потоком воздуха, сдвигающим реакцию (А) в правую сторону. Твердый продукт реакции (А) — триоксн-хлоридполисиликат титана анализировали на содержание в нем титана и хлора и остаточных ОН-групп. [c.204]


Смотреть страницы где упоминается термин Гриньяра групп: [c.510]    [c.288]    [c.64]    [c.82]    [c.90]    [c.133]    [c.216]    [c.86]    [c.273]    [c.283]    [c.208]   
Алюмогидрид лития и его применение в органической химии (1957) -- [ c.21 ]




ПОИСК





Смотрите так же термины и статьи:

Гриньяр



© 2024 chem21.info Реклама на сайте