Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фазовое равновесие газов и жидкости

    Одним из основных вопросов, решаемых при расчете кристаллизаторов, является описание кинетики кристаллизации, состоящей из стадий создания пересыщения, -образований зародышей и роста кристаллов. Она также зависит от перекристаллизации осадка, коалесценции и дробления кристаллов в результате столкновения между собой и со стенками аппарата. На кинетику массовой кристаллизации существенно влияют температура, степень пересыщения раствора, перемешивание, наличие примесей, физикохимические свойства раствора, конструкция аппарата и т. д. Детальное описание явлений и факторов, сопровождающих процессы массовой кристаллизации из растворов и газовых смесей, дано в монографии [17]. Важное значение имеет также описание условий равновесия между сосуществующими фазами (твердое вещество—жидкость, твердое вещество—газ (пар)). На основании условий фазового равновесия в первом приближении возможен выбор необходимого растворителя для процессов кристаллизации, а также перекристаллизации. [c.90]


    Особенности фазового равновесия в системе жидкость — газ Литература. ............. ........ [c.318]

    Данные по равновесию газ-жидкость используют при расчете движущей силы А. и при определении константы фазового равновесия = уЦх, где — Рг Р- В частном случае, когда справедлив закон Генри, т = Кд/Р. Отношение констант фазового равновесия для двух сравниваемых газов характеризует селективность абсорбента. Зависимость у от при расчете аппаратуры обычно наз. равновесной линией. [c.16]

    Расчеты абсорбционных установок основываются на законе фазового равновесия газ — жидкость (закон Генри). Методика тепловых расчетов абсорбционных аппаратов изложена в [Л. П, 27, 29]. [c.30]

Рис. 10.8. Фазовое равновесие пар жидкость для типичных коксового газа и жидкости, получаемых в аммиачных скрубберах прп косвенном процессе [25. Рис. 10.8. <a href="/info/6248">Фазовое равновесие</a> пар жидкость для типичных <a href="/info/109864">коксового газа</a> и жидкости, получаемых в <a href="/info/158894">аммиачных скрубберах</a> прп косвенном процессе [25.
    Критическая температура, максимальная температура, при которой жидкость и пар могут сосуществовать в равновесии, а также кривая точек кипения характеризуют продукт пласта, добываемого при эксплуатации месторождения. Соотношение газ—жидкость, плотность жидкости, ее цвет, давление и температура пласта являются лишь общими параметрами и указателями системы и только характеристики фазовой оболочки позволяют определить тип жидкости. [c.27]

    Рассмотрим алгоритм решения задачи расчета фазового равновесия газ - жидкость. - твердый СОз при температурах 120--220 К и давлении до 10 МПа. [c.211]

    В состоянии термодинамического равновесия скорости процессов абсорбции и десорбции, постоянно протекающих на границе раздела газ—жидкость, оказываются равными (см. 1.4.1). Это равенство определяет равновесную связь парциального давления компонента в газовой (паровой) фазе и концентрации компонента в растворе при данных температуре и давлении. Эта связь носит название изотермы фазового равновесия. Вид изотерм фазовых равновесий газ (пар)—жидкость является основой для выбора поглотителя (абсорбента) при разделении газовых смесей абсорбцией либо для определения возможности такого разделения при заданном поглотителе. Для того, чтобы скорость абсорбции превышала скорость десорбции на поверхности раздела фаз, т. е. протекал процесс поглощения газового компонента жидкостью, необходимо, чтобы в течение всего времени контакта парциальное давление компонента в газовой фазе превышало его равновесное парциальное давление над поглотителем при данной температуре. Равновесное парциальное давление зависит от концентрации компонента в жидкости, а она в процессе поглощения возрастает. Это означает, что поглотитель, поступающий на абсорбцию, должен и в начале, и в конце процесса содержать такое количество абсорбируемого компонента, которое обеспечивает выполнение условия абсорбции. Максимальная концентрация компонента в поглотителе, которая по условиям равновесия соответствует входной концентрации компонента в газе, называется поглотительной способностью. Чем выше поглотительная способность абсорбента по отношению к данному компоненту, тем меньшее количество его необходимо для полного поглощения компонента из газовой фазы. [c.39]


    Вследствие существенных различий между углеводородами и водой в отношении их адсорбционных характеристик и фазовых равновесий пар — жидкость на установках осушки газа твердыми адсорбентами наряду с высокой полнотой удаления воды достигается лишь сравнительно низкая степень извлечения углеводородных жидкостей. Разработка в последнее время эффективных и экономичных процессов извлечения и выделения в первую очередь углеводородов, при которых осушка является лишь побочным процессом, привела к широкому внедрению адсорбции как важного процесса производства газового бензина [10, И, 14, 25, 28, 31]. [c.30]

    Вопрос о фазовых равновесиях в растворах при высоких давлениях (равновесие газ — жидкость, критические явления в растворах и явление ограниченной взаимной растворимости газов) детально рассматривается в монографии И, Р. Кричев-ского [1], проблеме химического равновесия при высоких давлениях уделено значительное внимание в учебнике химической термодинамики М. X. Карапетьянца [2], а также в книге Л. А. Введенского [3]. [c.10]

    Совершенствование процессов улавливания химических продуктов коксования связано с изучением фазовых равновесий систем жидкость — газ, содержащих аммиак, сероводород, диоксид, углерода и цианистый водород. При этом важным условием является поддержание в аппарате равновесия между фазами, что обусловливает отбор небольшого количества пробы для анализа. Это представляет определенную трудность в выборе метода анализа вышеуказанных компонентов. [c.61]

    Все методы разделения основываются на определенных термодинамических свойствах компонентов и их смесей. Важную роль в данном случае играют законы о фазовом равновесии различного типа. Так, например, ректификация базируется на законах о фазовом равновесии системы жидкость-пар, экстракция - жидкость-жидкость, адсорбция — газ-твердое тело или жидкость-твердое тело, абсорбция - газ-жидкость и т. д. Кроме того, для расчета аппаратов широко используют ряд физико-химических свойств компонентов и их смесей таких, как вязкость, плотность, поверхностное натяжение, теплопроводность, теплоемкость и др. Все эти свойства, за небольшим исключением, зависят от состава [c.147]

    Для описания фазового равновеси в системах газ—жидкость и газ — твердое тело при высоких давлениях используются такие термодинамические параметры компонентов системы как летучесть, коэффициент активности, парциальные молярные объемы 1и другие, которые обычно применяются и лри рассмотрении равновесия в гетерогенных системах при низких давления.  [c.7]

    Здесь возникают качественно новые особенности, которые не встречаются в двухкомпонентных системах. Начали появляться экспериментальные данные о фазовых равновесиях твердое— жидкость—пар для трехкомпонентных систем, что связано с проблемами транспортировки сжиженных газов. [c.218]

    Вопрос о фазовых равновесиях в растворах при высоких давлениях (равновесие газ — жидкость, критические явления в растворах и явление ограниченной взаимной растворимости [c.10]

    Рассмотрение описанных явлений как фазовых равновесий газ — газ встречало возражения ряд авторов рассматривают эти равновесия как равновесия жидкость—газ. Различие в подходах [c.100]

    Равновесия газ—жидкость, критические явления в растворах и ограниченная взаимная растворимость газов детально рассматриваются в монографии И. Р. Кричевского Фазовые равновесия в растворах при высоких давлениях (Госхимиздат, 1952), проблеме химического равновесия при высоких давлениях уделено значительное внимание в учебнике химической термодинамики М. X. Карапетьянца (Госхимиздат, 1949) и в книге А. А. Введенского Термодинамические расчеты нефтехимических процессов (Гостоптехиздат, 1960). [c.14]

    Согласно схеме, изображенной на рис. 1.1, на поверхностях раздела газ — жидкость и жидкость — твердое тело имеют место скачки концентрации. Приняв в соответствии с общепринятой трактовкой, что на поверхности раздела фаз существует фазовое равновесие, запишем условия  [c.19]

    Увеличение отношения Н С и соответственно повышение крат нести циркуляции водородсодержащего газа влияют на фазово состояние газо-сырьевой смеси на входе в реактор. При одних и тех ж( температуре и давлении снижение кратности циркуляции способ ствует сдвигу равновесия в сторону образования жидкой фазы и наоборот, повышение кратности циркуляции способствует образованию паровой углеводородной фазы. Аналогичный эффект можно получить, изменяя давление в системе при постоянных кратности циркуляции и температуре. Снижение давления сдвигает равновесие в сторону образования паров, повышение — жидкости. Учитывая, что наиболее интенсивно процесс гидроочпстки идет в паровой фазе, при снижении кратности циркуляции также целесообразно снижать общее давление в системе. [c.48]


    Значения констант фазовых равновесий для большого количества систем приведены в многочисленных справочниках но равновесию в системах жидкость — жидкость и жидкость — газ [1 — 7]. Однако при разработке реакторных узлов справочных материалов, как правило, бывает недостаточно и возникает необходимость в экспериментальном определении констант фазовых равновесий. Если, как уже отмечалось выше, в общем случае подобные определения и не вызывают трудностей, то применительно к реакционноспособным системам экспериментальное определение констант фазовых равновесий часто превращается в неразрешимую задачу. [c.82]

    ОСОБЕННОСТИ ФАЗОВОГО РАВНОВЕСИЯ В СИСТЕМЕ ЖИДКОСТЬ — ГАЗ [c.96]

    Выше были приведены простейшие и наиболее широко известные соотношения, описывающие растворимость газов и распределение вещества в системе жидкость — газ. Естественно, что существующие сегодня методы приближенного расчета констант фазового равновесия этим не ограничиваются. Существует целый ряд более сложных методов расчета этих констант в системе жидкость — газ, которые не являются, однако, универсальными и пригодны лишь для определенных систем и в определенных условиях. Подробный разбор этих методов и рекомендации по их использованию даны Адлером и Палаццо [56, 57], а также Ридом и Шервудом [58]. [c.99]

    Описание фазового равновесия является одной из важнейших задач при расчете процессов разделения. Знание условий равновесия позволяет не только принципиально решить вопрос о возможности разделения многокомпонентной смеси методами ректификации, абсорбции, экстракции, но и выбрать схему разделения. Наиболее обший метод расчета равновесия основан на применении некоторого уравнения (уравнения состояния) ко всем фазам системы пар - жидкость. Однако использование уравнений состояния возможно лишь в случае простых систем, которые образованы веществами с аналогичными свойствами, например неполярными веществами, составляющими природный газ. [c.40]

    Настоящий курс физической химии написан с учетом возрастания требований к теоретической подготовке студентов. Перед коллективом авторов стояла задача написать книгу, отвечающую программе для химико-технологических институтов и в то же время такую, которая не устарела бы сразу по выходе из печати, учитывая неуклонное развитие науки о веществе и его превращениях. Этим определены особенности данного курса, в нем рассмотрены основные разделы физической химии — учение о строении вещества и химической связи, теория спектральных методов исследования молекул, химическая термодинамика (феноменологическая и статистическая), учение о фазовых равновесиях и растворах, электрохимия, химическая кинетика и катализ. Исключение материала, традиционно включаемого в учебники, но не имеющего прямого отношения к программе (учение о газах, жидкостях и т. п.), позволило уделить больше места основному содержанию физической химии. Материал пособия несколько выходит за рамки действующей программы, но тем самым предоставляются возможности использовать его при неизбежных ее изменениях и, что не менее важно, это делает его полезным для аспирантов и научных сотрудников, специализирующихся в области физической химии. Материал, который может быть опущен студентом при первом прочтении, выделен петитом. [c.3]

    При десорбции многокомпонентных смесей жидкость и газ в аппарате (по крайней мере иа теоретической тарелке) находятся в состоянии фазового равновесия — в том смысле, что жидкость кипит, а пар является насыщенным. При этом температура жидкости на каждой тарелке или в каждой точке аппарата определяется давлением и составом. [c.83]

    Анализ данных о равновесии под давлением в системах газ — жидкость (глава V) включает изло кеиие учения о фазовых равновесиях газ — жидкость, в развитие которого советскими учеными внесен большой вклад. Приближенный расчет химического равновесия проведен здесь в частности для реакции синтеза муравьиной кислоты из окиси углерода и воды данный пример шглюстрирует положительную роль повышения давления в реакциях между газами и жидкостями, столь распространенных, в особенности в органической химии. Б этой связи рассмотрен вкратце вопроси о прямом синтезе некоторых органических кислот. Решение этой задачи, повидимому, требует сочетания высоких температур и давлений. [c.76]

    В современной литературе отсутствуют сведения о константах К1Ьк, поэтому для их оценки обратимся к методам теории фазовых равновесий с использованием широко известных констант фазового равновесия газ —жидкость Кгоь и газ —гидрат К,он- [c.28]

    Простая дистилляция. Проводится при таких давлениях, когда длина своб. пробега молекул во много раз меньше, чем расстояние между пов-стями испарения жидкости и конденсации пара. Т-ра процесса при заданном давлении определяется условиями фазового равновесия между жидкостью и паром. При необходимости сшшения т-ры применяют Д. под вакуумом, а также с водяным паром или инертным газом (см. ниже). Распределение компонентов смеси между жидкостью и паром характеризуется коэф относит, летучести  [c.84]

    Во многих районах исследователи отмечают следующее при наличии газовой шапки в некоторых залежах давление насыщения несколько ниже первоначального пластового давления, что не увязывается с теорией фазового равновесия системы жидкость — газ. В отдельных случаях это объясняется литологической разобщенностью газовой и нефтяной частей залежи, в других, как показано на примере месторождения Колендо,—изменением свойств нефти от газонефтяного к водонефтяному контакту. При расчете средних параметров пластовой нефти по таким залежам давление насыщения оказывается отличным от пластового. [c.33]

    После приведения в соприкосновение газа и жидкости на поверхности раздела очень быстро (за время порядка 10 с) устанавливается равновесие. При этом скорость абсорбции (конденсации) становится равной скорости десорбции (испарения). Это равенство фактически и определяет существующую при равновесии связь концентрации или парциального давления компонента в газовой (паровой) фазе с концентрацией того же компонента в жидкости и температурой жидкости. Фазовые равновесия газ (пар)— жидкость представляют собой основу для расчета статию многих процессов, протекающих с участием этих фаз, в том числе абсорбции и десорбции. Степень приближения к равновесию на границе раздела фаз определяет полноту протекания этих процессов. Подробнее о фазовых равновесиях и методах их расчета см. разделы 13 и 14. [c.25]

    Вид изотерм фазовых равновесий газ (пар)—жидкость для конкретных систем совершенно индивидуален и наиболее надежным способом может быть определен с использованием экспериментальных данных по равновесиям, которые приводятся в справочной литературе. Существующие теории растворов позволяют предсказать характер кривых фазового равновесия. Наиболее простая теория, отвечающая экспериментально установленному закону Рауля, исходргг из того, что присутствие молекул растворенного вещества в растворе существенно не возмущает поле сил межмолекулярного взаимодействия, существовавшее в растворителе до введения инородных молекул. При этом как молекулы растворителя, так и молекулы растворенного вещества испытывают такое же воздействие окружающих молекул, что и в среде себе подобных. Поэтому вероятность перехода молекулы из раствора в паровую фазу остается такой же, как и при нахождении этой молекулы в чистой жидкости, состоящей из подобных ей молекул. Так как скорость десорбции компонента из раствора пропорциональна числу его молекул в единице объема или мольной доле х (см. 1.4.1), при низких давлениях парциальное давление компонента над раствором при равновесии можно представить в виде р = ра(Т)х, где ра Т) — зависящее от температуры давление насыщенного пара чистого компонента, находящегося в конденсированном состоянии. [c.39]

    Рецензия яа монографию Дж.М.Праузница Мо-текулярная термодинамика фазовых равновесий в жидкостях и газах". Болотин Н.К., [c.5]

    В восьмой главе рассматривается растроркмость газов в жидкостях, и в девятой - твердых тел в жидкостях, В десятой главе обсуждаются вопросы расчета фазовых равновесий при высоких давлениях. В заключение этой главы рас-снатривается проблема фазовых равновесий газ - газ и жидкость - жидкость. [c.249]

    В задаче подразумевается, Что флюидная часть ситсемы представлена двумя фа ми -- газом и жидкостью. В том случае, если известен сос-та флюидной части системы, рассчитать равновесие газ -- жидкость не составляет труда. Однако до тех пор, пока неизвестно количество выпадавшей твердой фазы, ничего нельзя сказать и о составе флюида. С другой стороны, пока не определен состав газа и жидкости, нет возможности рассчитать количество вьшавшего СОзг Такой заколдованный круг обычен дпя задач фазового равновесия. Выходом является использование итерационных процедур. Общая идея алгоритма заключается в последовательном уточнении, от итерации к итерации, количества твердой [c.211]

    Согласно теории Уитмана и Льюиса, в ядре потока концентрахщя постоянная и процесс переноса описывается одномерным стационарным уравнением молекулярной диффузии в тонких пленках при условии фазового равновесия на границе раздела жидкость - жидкость или жидкость - газ. Скорость массопередачи по каждой из фаз определяется выражением (4.3), в котором частные коэффициенты массопередачи равны К1 =1)1/61 и К2 =02182, где >1, /)2, 51, 2 - коэффициенты диффузии и поперечные размеры пленок соответствующих фаз (см. рис. 4.1). Пленочная теория не дает методов для определения толщин пленок 5, и 62, которые зависят от физико-химических свойств жидкостей и гидродинамических условий протекаемых процессов. [c.173]

    При записи уравнений математического описания процесса абсорбции использованы следующие условные обозначения информационных переменных а —удельная поверхность насадки — диаметр насадки О —расход газа Л — удерживающая способность насадки Н — высота ячейки полного перемеши-. вания К — общий коэффициент массопередачи Kv — объемный коэффициент массопередачи L — расход жидкости т. — коэффициент фазового равновесия N — общее число ячеек полного перемещивания Шг — скорость газа, рассчитанная на полное сечение колонны а)инв — скорость газа в точке ицверсии х — концентрация компонента в жидкой фазе у — концёнтрация компонента в газовой фазе 2 —общая высота насадочного слоя 2 —текущее значение высоты наса-дочного слоя. Индексы вх — вход вых —выход г —газ ж —жидкость инв — инверсия 1, 2,. .., п — номер ячейки полного перемешивания О — начальное значение р — равновесная величина ст — статическая величина. [c.89]

    Для хемосорбционных процессов, когда, например, растворенный газ реагирует с жидкостью, равновесие определяется с использованием константы химической реакции. Так, в простейщем случае, если в жидкой фазе идет обратимая реакция между абсорбируемым компонентом А и активным веществом поглотителя В с образованием продукта D (А + В D) и если система следует закону Генри (при небольших концентрациях раствора), то константа фазового равновесия г]з определяется по формуле [c.154]


Смотреть страницы где упоминается термин Фазовое равновесие газов и жидкости: [c.923]    [c.426]    [c.279]    [c.248]    [c.51]    [c.97]    [c.76]    [c.242]    [c.252]    [c.73]   
Свойства газов и жидкостей (1982) -- [ c.321 ]




ПОИСК





Смотрите так же термины и статьи:

Газы в жидкости

Равновесие жидкость пар

Равновесие фазовое



© 2024 chem21.info Реклама на сайте