Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись графита свойства

    Часто в смазки вводят в качестве наполнителя графит, слюду, тальк, мел, окись цинка. Некоторые из этих наполнителей придают смазке новые свойства, другие вводят с целью удешевления ее [c.743]

    Механические свойства тефлона могут быть еще улучшены введением наполнителей, в качестве которых применяют асбест, бронзовый порошок, графит, окись церия, стеклянное волокно и др. [c.245]


    Для придания герметикам определенных свойств, а также для их удешевления используются волокнистые (асбест различной степени волокнистости) и дисперсные минеральные наполнители (активные сорта углеродистой и белой саж, тальк, окись цинка, мел, литопон, барит, каолин, диатомит, сланцевая мука, графит, зола,- слюда, кварц, окись магния, силикаты кальция и алюминия и др.). Их содержание в герметиках составляет 50— 75% и более. Упрочняющее действие наполнителей чаще всего увеличивается с повышением степени их дисперсности. [c.142]

    При использовании т. наз. наполнителей-пигментов (окись и гидроокись алюминия, сульфат кальция и др.) получают прозрачные лакокрасочные материалы (шпатлевки, полиграфические краски, порозаполнители для дерева). Нек-рые Н. л. м. придают лакокрасочным пленкам специальные свойства. Так, графит и высокодисперсные металлич. порошки повышают, а слюда и кварц понижают электрич. проводимость пленок, углекислый цинк (витерит) и углекислый барий снижают их горючесть, бланфикс и окислы свинца сообщают пленкам непроницаемость к рентгеновским лучам. [c.170]

    Графит можно окислить, и совершенно не нарушая строения атомных слоев. Атомы кислорода внедряются при этом между напластованиями атомов углерода, раздвигая их. Графит обращается в окись графита — твердое вещество, лишенное металлических свойств графита. [c.378]

    В то время как в алмазе все электроны заняты в связующих атомы углерода электронных парах, в графите часть электроиов содержится, как в металлах, в виде электронного газа эти электроны и сообщают графиту металлические свойства непрозрачность, блеск, электропроводность и значительную теплопроводность. Графит, в противоположность алмазу, разделяет с металлами не только, их общие физические свойства, но и основное химическое свойство способность образовывать соли. Названная выше окись графита является основным окислом. В самом деле, при осторожном окислении графита в сернокислотной среде можно получить бисульфат графита — продукт внедрения между атомными пластами углерода ионов НЗОг. Каждый атомный пласт при этом становится своеобразным пластообразным катионом. Таким образом, графит по всем признакам является металлической модификацией углерода, как алмаз — его металлоидной модификацией. [c.378]

    Селвуд и сотр. [323] показали, что за ходом адсорбции молекулярного кислорода на графите можно проследить, измеряя парамагнитную восприимчивость кислорода. Таким образом можно также определить и адсорбцию других парамагнитных газов, таких, например, как окись азота. Этот метод (т. е. измерение восприимчивости адсорбата) имеет, естественно, ограниченную область применения, так как большинство газов, адсорбирующихся на гетерогенных катализаторах, являются диамагнитными. Кроме того, для изучения магнитных свойств самого адсорбата гораздо лучше использовать метод магнитного резонанса (см. предыдущий раздел). [c.122]


    Химические свойства. При обычных темн-рах У. химически инертен, одпако при достаточно высоких он соединяется со многими элементами и характеризуется сильными восстановительными свойствами. Химич. активность разных форм У. убывает по ряду аморфный У., графит, алмаз. При нагревании на воздухе аморфный У., графит и алмаз воспламеняются соответственно при темн-рах выше 300—500°, 600—700° и 850—1000°. Продуктами горения являются СО2 и СО (см. Углерода двуокись и Углерода окись), образующиеся ио реакциям +Oj= СО2 = [c.154]

    Вопросы и задачи. 1. Указать место углерода в периодической системе и нарисовать схему строения его атома. 2. Рассказать о распространении углерода в природе. 3. Перечислить свойства и применение а) алмаза, б) графита. 4. Как можно доказать, что алмаз и графит образованы атомами одного и того же элемента 5. Что называют а) адсорбцией, б) адсорбентом Указать техническое применение адсорбентов. 6. Рассказать о химических свойствах углерода. 7. Перечислить спойства угольного ангидрида а) физические, б) химические. 8. Что такое сухой лед и где его применяют 9. Как называют соли угольной кислоты а) средние, б) кислые Привести примеры. 10. Как относятся соли угольной кислоты а) к нагреванию, б) к действию кислот Привести уравнения соответствующих реакций. 11. Какие минералы и горные породы образованы солями угольной кислоты 12. Указать важнейшие соли угольной кислоты и их применение. 13 Какова растворимость в воде углекислого и двууглекислого кальция 14. Привести формулы веществ, имеющих следующие технические названия а) кальцинированная сода, б) питьевая сода. 15. На какой химической реакции основано применение пенного огнетушителя 16. Сколько углекислого газа выделится при нагревании 100 г кристаллического углекислого кальция 17. Какое вещество называют окисью углерода Каково его техническое название 18. Рассказать про окись углерода а) способы получения, б) физические свойства, в) химические свойства, [c.184]

    Пигменты, слабо влияющие на сорбционно-десорбционные свойства покрытий. К ним можно отнести окись хрома, двуокись титана, газовую сажу, графит, сурик железный, сурик свинцовый, крон свинцовый желтый, титанат магния, красный железоокисный пигмент. После пяти циклов загрязнений и отмывок остаточная активность перхлорвиниловых покрытий с применением этих пигментов составляет нё более 2,5%. [c.254]

    Довольно часто в смазки вводят различные присадки специального назначения [44]. Прежде всего укажем на неорганические вещества — графит, слюду, дисульфид молибдена и другие, предназначенные для улучшения противоизносных свойств смазок. Специальные защитные (консервационные) с.мазки содержат присадки для нейтрализации продуктов распада этиловой жидкости — триэтаноламин и его соли. Подобных присадок очень много, что определяется разнообразными условиями применения смазок. Упомянем только основные группы присадок, используемых для улучшения эксплуатационных свойств смя ок. [c.383]

    Огнеупорные материалы обычно производятся на базе дешевого и недефицитного сырья, содержащего в качестве основных компонентов глинозем А Оз, кремнезем 8102 и окись магния MgO. Для печей сопротивления основным огнеупорным материалом является шамот — материал, содержащий 35—45% АЬОз, остальное 8102 и небольшую долю примесей. По плотности различают шамоты плотные (7=19004-1800 кг/м ) и легковесные ( = 13004-800 кг/м ). Легковесные шамоты имеют несколько меньшую механическую прочность, но они лучше по теплоизоляционным свойствам, поэтому их применение целесообразнее для печей с рабочей температурой до 1200° С. Для высокотемпературных печей в качестве огнеупорных применяют высокоглиноземистые материалы (алунд, корунд, корракс), двуокись циркония 2гОг, а также уголь и графит. [c.17]

    При введении в пентапласт минеральных наполнителей увеличиваются модуль упругости, твердость, теплостойкость, улучшаются прочностные свойства, снижаются усадка, термический коэффициент линейного расширения, ползучесть под нагрузкой, уменьшается стоимость изделий. Перспективными наполнителями для пентапласта являются графит, микроизмельченная слюда, стекловолокно, окись хрома и др. Показатели основных свойств наполненного пентапласта приведены в таблице. , [c.274]

    При смазке гипоидных систем с применением химически активных присадок консистентные смазки мало отличаются от масел но пластичная структура смазок позволяет значительно полнее использовать физически активные противозадирные присадки. К этой группе присадок можно отнести такие наполнители, как основной карбонат свинца, окись цинка, графит и дисульфид молибдена исключительно важным достижением последнего периода в этой области является ацетат кальция. Он представляет собой не только обычный наполнитель или агент, улучшающий скольжение . Его смазывающая способность и противозадирные свойства не зависят от связывания его в виде комплекса в кальциевых мылах, что доказывается высокой эффективностью его в системах без мыл. Ацетат кальция прочно удерживается на поверхности металла и достаточно пластичен, вследствие чего обладает текучестью при высоких давлени 1Х. Таким образом, механизм его смазывающего действия аналогичен действию расплавленного стекла в фильерах для волочения металла [290]. Эту область следовало бы называть стеклодинамической и четко отличать ее от гидродинамической, химической, противозадирной и пластинчатой. Примером пластинчатой смазки могут служить скользкие хлопьевидные частицы слюды, графита и дисульфида молибдена. [c.159]


    Для достижения заданных физпко-химич. свойств и теплостойкости в состав композиции вводят наполнители — сажу, графит, окись титана, окись кремния. Для придания П. негорючести в композицию вводят трехокись сурьмы, хлор- или бромсодержащие вещества. [c.278]

    Около 1800 г. Дэви [38] в Англии и Петров [39] в России открыли дуговой разряд. Они наблюдали, что при соприкосновении и последуюш,ем разведении двух заостренных кусков древесного угля, присоединенных к батарее, между ними (в воздухе) возникал непрерывный разряд. Последний образовывал восходящую световую дугу невиданной в то время яркости. Энергия получалась от батареи, состоявшей из нескольких тысяч элементов, и ток должен был быть порядка нескольких ампер. Было найдено, что газ в дуговом разряде имел очень высокую температуру, так как платина, известь и окись магния очень легко плавились, а алмаз и графит быстро испарялись дуга могла существовать и при пониженном давлении воздуха. Электрические свойства дуги систематически не изучались примерно в течение ста лет, пока Айртон [40] не начала своих исследований. Ее монография, рассматривающая короткую дугу в воздухе, содержит почти полную историю открытия дугового разряда. [c.10]

    Димеризация пропилена под влиянием щелочных металлов с селективным образованием 4-метилпентепа-1 была открыта Шраммом в 1961 г. [102]. Эта реакция привлекла внимание многих исследователей, поскольку данный гексен является мономером для получения термопластов, обладающих ценными техническими свойствами, а также представляет значительный интерес в качестве высокооктанового составляющего моторного топлива. Для получения 4-метил-пентена-1 запатентованы многочисленные катализаторы на основе щелочных металлов в виде дисперсий в углеводородах или нанесенных на твердые носители — графит, активированный уголь, окись [c.200]

    Высокотемпературные методы переработки ядерного горючего требуют решения многих технологических задач. Труднейшие проблемы возникают при выборе материалов конструкций. Уран, плутоний и торий— весьма реакционноспособные металлы — должны плавиться в инертной атмосфере. Их нельзя плавить в материалах, обычно употребляемых для плавки металлов (например, в шамоте и др.), так как эти металлы будут реагировать с ними и загрязняться кремнием и кислородсодержащими примесями. Чистые тугоплавкие окиси, такие, как окись бериллия и алюминия, достаточно стойки, однако при работе с больши.ми количествами металла они чувствительны к тепловым ударам, под воздействием которых часто появляются трещины. Хорошими термическими и механическими свойствами обладает графит, но в пирометаллургических процессах неизбежно образуются карбиды металлов. [c.482]

    Асатума, Хираи и Накада [285] изучали механические свойства смесей полиэтилена низкой и высокой плотности, а также поливинилхлорида с 11 различными наполнителями (двуокись титана, окись свинца, графит и др.). Концентрация наполнителей в смесях менялась в широких пределах. Образцы [c.124]

    Физические свойства. У. известен в виде двух кристаллич. модификаций — алмаза и графита. Термодинамически стабильным при обычных условиях является графит. Область устойчивости алмаза находится при высокпх давлениях, однако благодаря кинетич. затрудненности перехода в графит он также существует при обычных условиях. Расчетным путем получено следующее ур-ние для кривой равновесия алмаз графит 7(атм) = 7000 - - 27 Г (при Т> >1200° К). Тройная точка равновесия алмаз гра-фит гжидкий У. на диаграмме состояния У. находится ок. 3800+200° и 125 кбар. Для твердого У. характерно также состояние с неупорядоченной структурой, называемое часто аморфным У. кокс, сажа, уголь древесный, активный уголь и др. Все формы У. нерастворимы в обычных неорганич. и органич. растворителях и растворяются в расплавленных металлах железе, кобальте, никеле, платиновых металлах и др., из к-рых при охлаждении У. кристаллизуется в виде графита или карбидов металлов. Нек-рые физич. свойства кристаллов алмаза и графита приведены в таблице. [c.153]

    С целью улучшения свойств эпоксидные смолы модифицируют феноло-, мочевино- или меламиноформальдегидными смолами, полиамидами, жирными кислотами высыхающих масел и другими соединениями. Компаунды отличаются низкой вязкостью. Для повышения эластичности и теплостойкости вводят 10—30% пластификаторов (малеиновый ангидрид, дибутилфталат, трифенилфосфат, ди-. октилсебацинат и др.) и наполнители (двуокись титана, железный порошок, тальк, каолин, графит, кварц, цемент, окись цинка, белая сажа, алюминиевая пудра, стекловолокно). [c.147]

    Обычно для этих целей используется графит. Однако он обладает высокой хрупкостью и недостаточной износостойкостью. Поэтому сейчас разрабатываются композиционные электропроводящие материалы, в которых в качестве свя зующих применяются полимерные соединения. В частности контактные щетки непроволочных резисторов изготовляют из материалов, в которых электропроводящие компоненты — графит, сажа, окись серебра и другие — связаны политри-фторхлорэтиленом, обладающим хорошими антифрикционными свойствами. [c.213]

    На свойства фосфатных клеев влияет тип и количество применяемого наполнителя [3, с. 114]. В качестве наполнителей используют корунд, измельч-енный кварцевый песок, двуокись титана, нитрид алюминия, окись хрома, графит и др. Большинство клеев с такими наполнителями имеют высокую адгезию к металлам — разрушающее напряжение при равномерном отрыве составляет для нержавеющей стали 4 МПа, титановых сплавов—10—12 МПа, меди —7 МПа, латуни — 8 МПа. Соединения характеризуются такж высокими значениями удельного объемного электрического сопротивления при повышенных температурах (р при 560 °С составляет 10 Ом-м) [8]. [c.155]

    Огнеупорные материалы. Из огнеупорных окислов наиболее известны окислы алюминия, бериллия, магния и циркония, которые применяют главным образом как теплоизоляционные материалы. Самая твердая из них — окись алюминия. Она характеризуется высокой прочностью и хорошими противоизносными свойствами. Окись бериллия имеет более высокую температуру плавления (2500°С), чем окись алюминия, и наиболее высокое сопротивление термическому удару. Правда, при низких температурах окись бериллия ведет себя как абразив. Окись магния по многим характеристикам удовлетворяет требованиям к высокотемпературным смазочным материалам. Она сохраняет стабильность в кислороде до 2000—250 0 °С. Графит (кусковой) обладает очень хорошими механическими свойствами и тер.мической стабильностью (в пределах температур применения огнеупорных материалов). Однако при высоких температурах он сильно окисляется. В связи с этим ведется непрерывная работа по улучшению его стойкости к окислению. В качестве примера можно указать на создание антиокисли- [c.156]

    Наибольший интерес представляют перхлорвиниловые лаки, получаемые из полихлорвиниловой смолы дополнительным хлорированием ее в среде хлорбензола. Для растворения перхлорвиниловой смолы может служить любой органический растворитель (за исключением спиртов и бензина). В качестве наполнителей могут служить самые разнообразные материалы гранит, диабаз, андезит, каолин, тальк, окись цинка, сурик, сажа, графит, кокс, алюминиевая пудра и т. п. Для улучшения механических свойств лака к нему в качестве пластификаторов прибавляются некоторые органические прод)гкты. Продолжительность затвердевания перхлорвинилового лака зависит от температуры при низких температурах лак затвердевает лишь через несколько суток. [c.49]

    Исследовалось влияние химической природы и структуры наполнителей на реологические, физико-механические и диэлектрические свойства пентапласта, а также на его термостабильность и способность к переработке различными методами [130,131, 235]. На рис. 52 представлена зависимость объемного показателя текучести расплава от типа наполнителя и его содержания. Волокнистые наполнители (асбест, стекловолокно) вызывают значительное увеличение вязкости расплава и соответственно уменьшение показателя текучести. Это явление можно рассматривать как физическое структурирование полимера. Зернистые наполнители (окись хрома, двуокись титана), а также аэросил и наполнители пластинчатого строения (микроиз-мельченная слюда и графит) в заметно меньшей степени оказывают структурирующее действие на расплав пентапласта. [c.85]

    Клей холодного отверждения на основе эпоксидной смолы готовят путем смешивания 100 весовых частей смолы ЭД-5 или ЭД-6 и 6,5 весовой части полиэтилеипо-лиамина. Клеи на основе эпоксидных смол обладают хрупкостью и имеют высокий коэффициент линейного расширения, а также усадку при отверждении. С целью ул> шения свойств в эти клеи вводят различные пластификаторы и наполнители. В качестве пластификаторов применяют дибутилфталат, диактилсебаццнат, глицерин, в качестве наполнителей — тальк, слюду, кварцевый песок, цемент, графит, каолин, окись алюминия, титановые белила, металлические порошки. Чаще всего эпоксидные смолы, модифицированные пластификаторамп, полиэфирными смолами, мономерами, каучуками в сочетании с наполнителями, называют компаундами. Компаунды могут быть заливочными, пропитывающими и клеевыми. [c.381]

    С целью улучшения защитных свойств покрытия, технологичности и влагозащитности в лаки рекомендуется вводить пигменты и наполнители (окись хрома, двуокись титана, железный сурик, графит и т. д.), протекторы (порошкообразный алюминий), ингибиторы коррозии. [c.144]

    Неорганические паполнители, так же как и органические, могут использоваться для придания специальных свойств отвержденным продуктам. Графит и дву-сериистый молибден используются для поверхностной сма.зкн [Л. 12-30, 12-67]. Окись цинка с некоторыми системами служит ускорителем процесса отверждения. Специальные керамические наполнители улучшают радиационную стойкость [Л. 12-71]. [c.163]

    Ниобий подобно танталу обладает многими ценными свойствами. Поэтому большое значение приобретают покрытия из ниобия, дающие возможность значительно экономить металл. Покрытия из ни-обия можно наносить на различные материалы, например сталь, -никель, медь, а также -на кварц, окись алюминия, графит. [c.188]

    Существенное влияние на старение оказывают компоненты лакокрасочного состава — пигменты, пластификаторы и другие добавки. Разрушение покрытий замедляется при наличии пигментов, обладающих отражатель ны ш свойствами или выполняющих функции термостабилизаторов, напротив, оно ускоряется, когда пигменты служат катализаторами или инициаторами химических процессов. Так, введение в состав перхлорвиниловых и хлор-каучуковых покрытий свинцовых пигментов заметно повышает их термостойкость, тогда как железоокиспые пигменты и окись цинка ускоряют разложение. Особенно благоприятно влияют на термостойкость самых разных покрытий пигменты с чешуйчатой формой частиц — алюминиевая пудра, бронзы, слюда, графит. Введение алюминиевой пудры в алкидные и масляно-битумные покрытия увеличивает их термостойкость более чем на 100 "С. Белые, отражающие тепловые лучи покрытия также медленнее стареют при нагревании, чем аналогичные цветные покрытия. Присутствие пластификаторов и остаточных растворителей в пленке нередко может вызвать усиление деструкции. Замечено, что диалкилфталаты ускоряют разложение поливинилхлорида, поскольку легче него генерируют радикалы при нагревании. Перхлорвиниловые покрытия, полученные из хлорбензольных растворов, оказываются менее термостойкими, чем такие же покрытия, изготовленные из растворов в ксилоле или ацетоне. На термостойкость покрытий влияет природа подложки, однако это влияние носит избирательный характер в зависимости от материала покръ1тия разложение может ускоряться, замедляться или сохранять скорость разложения свободной пленки. [c.175]

    Наполнитель вводится в компаунды с целью снижения стоимости материала, улучшения его физико-механических свойств и внешнего вида, увеличения теплопроводности, уменьшения растрескивания и коэффициента линейного расширения. Тип наполнителя заметно влияет на свойства отвержденных компаундов. Лучшими наполнителями являются порошкообразный кварц, окись алюминия, графит, асбестовое и стеклянное волокно. Их можно вводить в количестве 100—2507о-Ниже представлены свойства отвержденного эпоксидного компаунда, содержащего 250% кварцевой муки и 33% отвердителя (фталевого ангидрида). [c.685]


Смотреть страницы где упоминается термин Окись графита свойства: [c.50]    [c.606]    [c.548]    [c.172]    [c.516]    [c.46]    [c.156]    [c.147]    [c.87]    [c.132]    [c.122]    [c.124]    [c.306]    [c.63]   
Лекции по общему курсу химии (1964) -- [ c.377 ]




ПОИСК





Смотрите так же термины и статьи:

Графит

Графит графита

Графит свойства

Графита окись

Графой

Графы



© 2025 chem21.info Реклама на сайте