Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глутамин обмен

    Азотистый обмен связан преимущественно с обменом белков, структурными единицами которых являются аминокислоты. Поэтому далее представлены накопленные к настоящему времени данные о нарушениях обмена отдельных аминокислот при патологии. Повышенный интерес биохимиков, физиологов и клиницистов к проблемам патологии обмена аминокислот объясняется рядом обстоятельств. Во-первых, имеются экспериментальные доказательства и клинические наблюдения о развитии патологического синдрома, в основе которого лежат нарушения нормального пути обмена отдельных аминокислот в организме. Во-вторых, в последнее время аминокислоты и их производные нашли широкое применение в клинической практике в качестве лекарственных средств например, метионин используется для лечения ряда болезней печени, глутаминовая кислота — некоторых поражений мозга, глутамин — кетонурии и т.д. Наконец, ряд аминокислот и продукты их декарбоксилирования (биогенные амины) оказывают регулирующее влияние на многие физиологические функции организма. Следовательно, знание закономерностей обмена отдельных аминокислот в норме и особенно при патологии представляет исключительный научно-теоретический и практический интерес. [c.464]


    Глутамину принадлежит важная роль в обмене аминокислот и аммиака. [c.389]

    У больщинства высших растений избыточный аммиак обезвреживается при образовании амидов — аспарагина и глутамина. Важная роль амидов в азотном обмене растений была выяснена благодаря классическим исследованиям Д. Н. Прянишникова. Он показал, что накопление амидов может быть при прорастании семян бобовых растений, при питании растений аммиачным азотом и у этиолированных растений, когда распад белков преобладает над их биосинтезом. В этих случаях в [c.241]

    Клетки, выращиваемые в тканевой культуре, могут утратить способность к ряду обменных превращений. Вполне вероятно, однако, что лишь некоторые виды клеток животного организма осуществляют такие реакции, как синтез глутамина или превращение фенилаланина в тирозин. По-видимому, глутамин синтезируется в определенных клетках и переносится к другим током крови. Интересно отметить, что минимальная концентрация глутамина, необходимая для оптимального роста тканевых культур, значительно выше, чем необходимые. концентрации других аминокислот. Количество глутамина в крови также значительно превосходит содержание в ней других аминокислот (табл. 3). [c.132]

    Это двухосновные аминокислоты с кислотным характером содержатся в растительных белках, участвуют в обмене веществ у растений и животных. Интересны неполные амиды этих аминокислот — аспарагин и глутамин  [c.376]

    Антиметаболиты — вещества, структурно очень близкие к естественным метаболитам организма и при попадании в организм вытесняющие эти метаболиты в обменных реакциях. Наибольшей стерилизующей активностью обладают антиметаболиты фолиевой кислоты, глутамина, пиримидина и пурина, участвующие в биосинтезе нуклеопротеидов. -При попадании в организм насекомого эти вещества нарушают синтез нуклеиновых кислот (ДНК и РНК) в ядрах половых клеток. Эффективность таких хемостерилизаторов зависит эт активности синтетических процессов в ядрах клеток. Так, выходя из куколок, самцы мух содержат уже зрелую подвижную сперму, в их сперматозоидах образование нуклеиновых кислот уже закончено. В то же время в яйцах отродившихся самок происходит быстрый интез нуклеиновых кислот, и антиметаболиты могут проявлять свое действие. Этим объясняется тот факт, что хемостерилизаторы этой группы хорошо стерилизуют только самок. [c.215]

    Описываемый фермент имеет молекулярную массу около 5000 и состоит из большого числа блоков со сложной структурой. Он катализирует очень многие реакции, однако его основная роль сводится к катализу обменных реакций глутамата и глутамина и катализу образования амида а-кетоглутаровой кислоты  [c.106]


    Если окажется, что эти данные имеют общее значение, то это будет означать, что амид, содержащий аминокислотную группу, связанную с аммиачной группой (например, глутамин), может обменять свою аммиачную группу на аминокислоту и даже на пептид. Энергия для этого процесса будет доставляться синтезом глутамина, которому, как показал Спек, может предшествовать образование фосфатсодержащего промежуточного продукта. Тогда специфичность фермента, который катализирует [c.77]

    L-r. к. встречается во всех организмах в своб. виде (в плазме крови вместе с глутамином составляет ок. /з ех своб. аминокислот) и в составе белков. Р-ция L-Г. к. + + NHj + АТФ глутамин + АДФ + Н3РО4 (АДФ-аденозиндифосфат) играет важную роль в обмене NHj у животных и человека. В организме декарбоксилируется до у- [c.588]

    В последнее время получило признание применение в онкологической клинике ферментов бактериальной природы в качестве лекарственных средств. Широко используется Ь-аспарагиназа (выпускается в промышленных количествах и Ь-глутамин(аспарагин)аза для лечения острых и хронических форм лейкозов и лимфогранулематозов. Более десятка описанных в литературе бактериальных ферментов испытаны в основном на животных с перевивными опухолями или на раковых клетках опухолей человека и животных, выращенных в культуре ткани. Основными постулатами применения ферментов в онкологии являются различия в метаболизме клеток опухолей по сравнению с обменом в нормальной, здоровой, клетке. В частности, современные стратегия и тактика энзимотерапии опухолевых поражений учитывают разную чувствительность нормальных и опухолевых клеток к недостатку (дефициту) незаменимых (так называемых эссенциаль-ных) факторов роста. К таким ростстимулирующим факторам относятся не только пищевые факторы (витамины, незаменимые аминокислоты, макро-и микроэлементы), но и ряд так называемых заменимых веществ, включая заменимые аминокислоты, к недостатку которых опухолевая клетка ока- [c.167]

    Следует указать также на использование галактозы и частично глюкозы для биосинтеза цереброзвдов и гликолипидов, выполняющих важные и специфические функции в деятельности ЦНС. В этом синтезе участвуют не свободные моносахариды, а гексозамины (галактозамин и глюкозамин), биосинтез которых в свою очередь требует доставки амидного азота глутамина, интегрируя тем самым обмен углеводов, липидов и белков. [c.549]

    Среди свободных аминокислот в мышцах наиболее высока концентрация глутаминовой кислоты (до 1,2 г/кг) и ее амида глутамина (0,8—1,0 г/кг). В состав различных клеточных мембран мышечной ткани входит ряд фосфоглицеридов фосфатидилхолин, фосфатидилэтаноламин, фосфатидилсерин и др. Кроме того, фосфоглицериды принимают участие в обменных процессах, в частности, в качестве субстратов тканевого дыхания. Другие азотсодержащие вещества мочевина, мочевая кислота, аденин, гуанин, ксантин и гипоксантин —встречаются в мышечной ткани в небольшом количестве и, как правило, являются либо промежуточными, либо конечными продуктами азотистого обмена. [c.652]

    Например, при получении глутамина, играющего важную роль в обмене азота в организме, одной из промежуточных стадий является образование ацилфосфат а. Непосредственное взаимодействие глутаминовой кислоты с аммиаком не происходит из-за слабой электрофильности атома углерода карбоксильной группы. Однако эта реакция может быть осуществлена в организме с участием АТФ (в присутствии фермента глутаминсинте-тазы). Глутаминовая кислота при этом образует ангидрид с остатком фосфорной кислоты и таким образом становится более активной в последующей стадии ацилирования аммиака. [c.450]

    Это тоже одна из важных центральных реакций в обмене аминокислот, потому что это главный путь превращения свободного аммиака, который, как известно, токсичен, в нетоксичный глутамин для переноса кровью (разд. 19.12). Глутаминсинтетаза-аллостерический фермент. У Е. соН и других прокариот каталитическая активность глутаминсинтетазы регулируется несколькими метаболитами, [c.655]

    Глутаминовая кислота и глутамин. Еще большее значение в обмене веществ принадлежит глутаминовой кислоте и глутамину. Глутаминовая кислота играет наиболее важную роль в реакциях переаминирования, ее аминогруппа может быть перенесена не только на кетокислоты, но и на другие соединения, и, таким образом, с ее участием синтезируется очень большое [c.255]

    Эти кислоты, как и другие двухосновные монбаминокислоты, обладают кислой, редкииед, т к как лри образовании внутренних солей у них остается одна свободная карбоксильная группа. Обе кислоты постоянно встречаются среди продуктов гидролиза белковых веществ. Аспарагиновая кислота в свободном состоянии встречается в животных и растительных организмах, играя важную роль в азотистом обмене. Обе кислоты-способны связывать обладающий токсическими свойствами аммиак с образованием амидов — аспарагина я глутамина (см. ниже). Глутаминовая кислота применяется при лечении психических заболеваний. [c.379]


    Амид другой дикарбоновой аминокислоты — глутаминовой, называется глутамином. Он распространен не только в растениях, но и в организме животных, где играет важную роль в обмене веществ [c.250]

    В опытах на крысах было показано, что внутривенно введенный N -аммоний может выводиться как таковой [71] однако в физиологических условиях аммиак крови, по-видимому, не имеет существенного значения как источник аммиака мочи. Главную роль в образовании аммиака играют а) дезамидирование глутамина и б) действие ферментной системы, состоящей из глутамат-трансаминазы и глутаматдегидрогеназы. Следует учитывать также возможность участия в этом процессе глицин-оксидазы, поскольку в моче обнаружена глиоксиловая кислота [62]. Однако значение глициноксидазы в обмене веществ взято под сомнение [72] возможно, что глиоксиловая кислота мочи представляет продукт других превращений. [c.175]

    Первую ступень синтеза глутатиона, а именно образование у-глутамилцистеина из цистеина и глутаминовой кислоты [реакция (1), см. выше], наблюдали в опытах с ферментными препаратами из зародышей пшеницы [539] и из печени свиньи [536]. Фермент из зародышей пшеницы был подвергнут 50-кратной очистке показано, что для его действия обязательно присутствие аденозинтрифосфата и ионов магния и калия. Фермент катали-зирует также включение 5 -цистеина в -глутамилцистеин путем обмена в присутствии аденозинтрифосфата и ионов магния и калия. Сходный фермент получен из печени свиньи для этой системы не требуется наличия ионов калия, однако ионы магния оказались необходимыми. Ферменты из зародышей пшеницы и из печени свиньи не идентичны ферменту, синтезирующему глутамин. В опытах с ферментом из зародышей пшеницы наблюдали обмен между неорганическим фосфатом и аденозинтрифосфатом в присутствии глутамата, а также обмен фосфатной группой между АДФ и АТФ в отсутствие добавленных аминокислот. Интерпретация этих данных пока затруднительна. [c.269]

    Их физиологическую роль выяснил Д. Н. Пряш1шнш ов. При белковом обмене накапливается вредный для растений аммиак обеззараживается он в результате образования аспарагина (и глутамина). Много аспарагина накапливается в растениях, произрастающих в темноте или при чрезмерном удобрении солями аммония. Аспарагин, накапливаясь в растениях, служит запасным материалом, из которого они черпают азот, необходимый для синтеза аминокислот и далее белков. Аспарагин и глутамин — кристаллические вещества. Аспарагин оптически. активен, имеет левовращающую и правовращающую формы. [c.376]

    Рассмотрение обмена аминокислот по биогенетическим семействам [7] показало, что наибольший удельный вес во все изучавшиеся периоды роста и развития яровой вики принадлежит аминокислотам группы аспартата (лизин, метионин, треонин, изолейцин, аспарагиновая и аспарагин), связанным с обменом ок-салоацетата, и глутамата (аргинин, пролин, глутаминовая, глутамин и у-аминомасляная), сопряженным в обмене с а-кетоглута-ратом, т. е. аминокислотам, связанным с циклом ди- и трикар-боновых кислот (см. табл. 3). Содержание этих групп от 28-го до 67-го дней после посева снижается более чем в 3,5—4 раза, что связано с изменением удельного веса азотистых соединений в метаболизме растений по мере роста и развития за счет интенсификации обмена и возрастания удельного веса углеводов [8]. На долю семейств нирувата (аланин, валин, лейцин) и серина (серии, цистеин, цистин, глицин) приходится менее 1/3 общего количества свободных аминокислот. Содержание их в процессе вегетации растений также убывает. [c.91]

    Характер накопления некоторых аминокислот выпадает из общей закономерности. Так, содержание аспарагина возрастает от начала к концу вегетации, лишь незначительно уменьшаясь в некоторых органах у отдельных видов в листьях в фазу бутонизации у копеечника родственного и к. южносибирского, в фазу плодоношения у к. Гмелина и к. родственного, в репродуктивных органах в фазу плодоношения у к. родственного (рис. 3). Количество глутамина возрастает в листьях копеечника родственного, к, ферганского до конца вегетации, у к. забытого — до фазы цветения. В стеблях всех видов количество глутамина увеличивается до конца вегетации. В репродуктивных органах возрастание до конца вегетационного периода отмечено только у копеечника Гмелина (рис. 4). Содержание глицина в процессе вегетации повышается в листьях копеечника ферганского, в репродуктивных органах —к. Гмелина (рис. 5). По-видимому, это связано с видовыми особенностями растений и участием этих аминокислот в общем обмене веществ. [c.57]

    Аминокислоты в глюконеогенезе. Обмен белков тесно связан с обменом углеводов через цикл трикарбоновых кислот. Атомы углерода различных аминокислот мотут преобразовываться в ацетил-КоА или промежуточные продукты цикла, т. е. аминокислоты могут служить источником в синтезе углеводов. По способности участвовать в глюконеогенезе аминокислоты делятся на три группы I) гликогенные, 2) кетогеи-иые, 3) гликогенные и кетогенные. Гликогенные — это аминокислоты, которые могут быть предшественниками пировиноградной кислоты, а следователбно, и глюкозы. К гликогенным относятся 15 аминокислот аланин, аргинин, аспарагиновая кислота, аспарагин, глутаминовая кислота, глутамин, глицин, гистидин, метионин, цистеин, пролин.серин, треонин, триптофан, валнн. Кетогенные — это, аминокислоты, при катаболизме которых может образоваться ацетоуксусная кислота. Лейцин — только кетогевяая аминокислота. Четыре аминокислоты (фенилаланин, тирозин, лизин, изолейцин) являются одновременно и гликогенными, и кетогенными. [c.6]

    У белков семян (см. табл. 25) присутствие -больших количеств амидных групп (особенно в глиадине и зеине), повидимому, указывает на важную роль глутамина и аспарагина в азотистом обмене прорастающего семени. Можно предположить, что в начале прорастания ферментативная система, ответственная за выработку этих амидов — аспарагина и глутамина,—либо отсутствует, либо не очень активна. Интересно отметить наблюдавшийся [766] факт понижения проницаемости некоторых клеточных оболочек для двухвалентных ионов по сравнению с проницаемостью для одновалентных амидов. Значительные вариации в составе гистонов печени и тимуса (аланин, глицин, валин, лейцин, изолейцин, треонин и глутаминовая кислота) не позволяют оценить те различия, которые обнаруживаются при сравнении аминокислотного состава этих гистонов с гистоном саркомы. Во многих отношениях гистон саркомы обнаруживает большое сходство с аминокислотным составом нор1мальных гистонов в частности, это справедливо по отношению к содержанию изолейцина в гистоне тимуса теленка и саркомы крысы. Из всех белков (40 или более), сгруппированных в табл. 14—25, только два содержат более 10%, а 32 — меньше чем 5% изолейцина. С другой стороны, в гистонах тимуса и саркомы содержится 20,5 и 17,9% изолейцина соответственно. [c.231]

    Известно, что у бактерий родственные белки контролируют азотный и фосфатный обмен, синтез белков мембраны, хемотаксис и споруляцию. Здесь будет рассмотрен азотный обмен у Е. соИ, в котором синтез ряда белков усиливается при нехватке азота. К таким белкам относится глутаминсинтетаза - фермент, играющий наиболее важную роль в усвоении азота и катализирующий реакцию глутаминовая кислота + аммиак глутамин. [c.188]

    Центральное место в азотистом обмене у микроорганизмов занимает глутамин, так как обычно не свободный аммиак, а его амидная группа служит донором азота при синтезе триптофана, АМР, СТР, глюкозамин-6-фосфата, гистидина и карбамоилфосфата. Кроме того, а-аминогруппа глутамина используется в качестве источника азота для синтеза глицина и аланина, осуществляемого при действии специфических трансами-наз. Естественно было ожидать, что именно глутамин-синтетаза как первый фермент сильно разветвленного пути, ведущего к синтезу широкого круга различных метаболитов, служит первичной мишенью для регуляторных воздействий. Однако механизм регуляции активности этого фермента, установленный Э. Стэдманом и его сотрудниками, оказался необычайно сложным. [c.108]

    Превращения этих аминокислот, а также кетоновых тел в мозгу взрослых животных сосредоточены главным образом в малом , т. е. глутамин-синтезирующем, компартменте, где особенно ярко проявляется анаболическая функция ЦТК. Морфологически этот компартмент приурочен к нейроглиальным клеткам. Напротив, катаболическая, энергетическая функция ЦТК наиболее четко проявляется в большом компартменте мозга, где интенсивно протекают реакции аэробного окисления глюкозы. Нейрохимики и нейроморфологи на основании многочисленных экспериментов с С-предшественниками считают, что этот метаболический компартмент объединяет нейрональные структуры. Судя по расчетам Ван ден Берга и Гарфинкеля, скорости метаболических потоков для мозга мышей составляют 1,25 и 0,30 мкмолей субстрата (ацетил-КоА) за минуту в расчете на 1 г сырого веса ткани соответственно для большого и малого компартментов. Обмен метаболитов между компартментами осуществляется относительно медленно скорость потока в данном случае составляет в среднем 0,14 мкмоля субстрата за минуту в расчете на 1 г ткани. [c.54]

    Накопление глутамина в нервных клетках приводит к повышению осмотического давления и в больших концентрациях может вызвать отек мозга. Снижение концентрации глутамата нарушает обмен нейромедиаторов, в частности синтез у-аминомасля-ной кислоты (ГАМК) — основного тормозного медиатора  [c.236]

    При растворении многих веществ в дейтериевой (ВгО) или три-тиевой (Ш2О) воде происходит обмен атомов водорода на О или Аминокислоты, нуклеозиды, короткие полипептиды, белки в конформации беспорядочного клубка и одноцепочечные нуклеиновые кислоты быстро обменивают атомы водорода, связанные с атомами азота, кислорода и серы атомы водорода, связанные с атомами углерода, обмениваются гораздо медленнее. В белках, в силу их химических свойств, способные к обмену протоны боковых групп некоторых аминокислот (например, ОН серина и NH2 глутамина и аспарагина обмениваются намного быстрее, чем протоны пептидной связи или амидных групп глутамина и аспарагина. Эти два класса протонов различают по рН-зависимости скоростей водородного обмена — первый класс имеет минимум при pH 7, второй — при pH 3. Каждый класс можно подразделить по принципу степени участия протонов в образовании водородных связей. Поскольку скорость водородного обмена обычно гораздо меньше, чем скорость образования и разрыва водородных связей (которая контролирует доступ растворителя к группам, участвующим в образовании водородных связей), наблюдаемая скорость водородного обмена для любой группы есть произведение скорости собственно водородного обмена на долю времени, в течение которого группа доступна растворителю. Таким образом, если группа участвует в образовании водородной связи, то это должно приводить к понижению скорости водородного обмена. Это происходит потому, что данная группа подвергается действию растворителя только тогда, когда имеет место локальный разрыв водородных связей. Следовательно, измеряя скорости водородного обмена для открытых групп (например, в мономерах) и скорости обхмена для аналогичных групп макромолекулы, можно определить в каждый данный момент времени долю групп, не участвующих в образовании водородных связей. [c.521]


Смотреть страницы где упоминается термин Глутамин обмен: [c.139]    [c.460]    [c.139]    [c.399]    [c.256]    [c.271]    [c.316]    [c.318]    [c.21]    [c.423]    [c.253]   
Биохимия аминокислот (1961) -- [ c.315 , c.318 ]




ПОИСК





Смотрите так же термины и статьи:

Глутамин



© 2024 chem21.info Реклама на сайте