Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ реакций обмена

    Механизм ионного гетерогенного катализа аналогичен гомогенному кислотно-основному, т. е. сводится к обмену протонами или ионами (катионами и анионами) между катализатором и реагирующими молекулами. Ионный гетерогенный катализ характерен для реакций органической химии, например для обратимых процессов перемещения водорода в карбонильных соединениях с образованием гидроксила [c.226]


    Состав образующихся продуктов и селективность процесса по целевому продукту зависят от отношения констант скорости последовательных стадий реакции и от соотношения реагентов. Первый и этих факторов определяется, в свою очередь, свойствами исходных веществ и продуктов, а также выбранным типом реакций а-оксидов. Прн нуклеофильном катализе основание вступает в протолитический обмен с продуктами реакции [c.285]

    Г. СОГЛАСОВАННЫЙ ОБЩИЙ КИСЛОТНО-ОСНОВНОЙ КАТАЛИЗ РЕАКЦИИ ОДНОГО СТОЛКНОВЕНИЯ И ОБМЕН ПРОТОНА С РАСТВОРИТЕЛЕМ [c.163]

    В которой первая стадия является медленной, может подвергаться общему кислотному катализу. Реакция удаления трития не катализируется основаниями. Это указывает на то, что удаление протона происходит не на медленной стадии процесса. Другими словами, процесс не является синхронным, а скорее протекает через истинное промежуточное соединение. На основе имеющихся теперь сведений кажется, что ароматический водородный обмен можно лучше всего объяснить уравнениями [c.183]

    Полученные таким образом первичные амины свободны от примесей вторичных или третичных аминов (в отличие от продуктов, полученных в реакции 10-45). Обычно реакция идет довольно медленно, но есть удобный метод ее ускорения, который заключается в использовании апротонного диполярного растворителя, такого, как ДМФ [748], или краун-эфира [749]. Гидролиз фталимида как при кислотном, так и при основном катализе (кислотный катализ используется значительно чаще) тоже, как правило, идет очень медленно, поэтому стараются применять улучшенные методики. Одной из распространенных является модификация Инга — Манске [750], согласно которой фтал-имид нагревают с гидразином так, чтобы произошла обменная реакция. Но известны и другие методы, в которых используют [c.162]

    Хотя в этом докладе, посвященном катализу реакций водородного обмена, о механизме процесса говорилось мало, очевидно, что этот вопрос нельзя обсуждать, не учитывая закономерностей кислотно-основного катализа обменных реакций. [c.231]

    На этой схеме основные питательные вещества для высокоорганизованных живых организмов представлены углеводами, липидами и белками они превращаются через многие другие более простые соединения в углекислый газ, воду и соединения азота. Эти превращения осуществляются посредством реакций, катализируемых ферментами. Основная роль ферментов — катализ реакций обмена, за счет которых осуществляется сохранение, рост и репродукция живых организмов. Обмен (метаболизм) включает два точно сбалансированных процесса, а именно анаболизм, или использование энергии и материалов для химических синтезов, и катаболизм, или расщепление субстратов с освобождением энергии. Каждая ступень в сложной [c.112]


    Активные места ферментов и реагируюш,ие вещества образуют цепочки или циклы ( цепи перераспределения связей ), по которым в результате перемещения протонов и электронов синхронно происходит изменение кратности связей, что и обусловливает высокую компенсацию энергии разрыва старых связей и резкое снижение энергии активации реакции. Фермент строго ориентирует молекулы реагентов вдоль координаты реакции, что повышает число эффективных столкновений приблизительно в 1000 раз. Молекулы реагирующих веществ под действием ферментов переходят в наиболее реакционноспособные формы, чаще всего ионные, что еще в 1000 раз увеличивает скорость реакции. Чтобы реагирующее вещество перешло в наиболее реакционноспособное состояние, необходим дополнительный резерв энергии. Одним из источников этой дополнительной энергии является многоточечная адсорбция реагирующей молекулы на ферменте с использованием части энергии адсорбции на перестройку молекулы. Второй возможный путь повышения энергоемкости системы указан Кобозевым — это реализация в катализе энергетического механизма активации. Кобозев подчеркивает, что катализ рассматривается как обмен связями или электронами, происходящий в условиях статистического и энергетического равновесия с внешней средой. Эта валентная форма катализа считается столь универсальной, что обычно даже не ставится вопрос о существовании какой-либо другой его формы. А между тем эта другая форма катализа существует и весьма широко представлена в виде биологического ферментативного катализа, охватывающего огромную область каталитических превращений в живом веществе. Валентный механизм каталитического действия нельзя признать вполне общим и должна существовать иная, весьма мощная форма каталитической активации, реализующаяся в биокатализе. [c.117]

    В системе жидкость — твердая фаза (где твердой фазой служат NaOH, КОН, К2СО3, ЫагСОз) такой обмен не идет. В этом случае реакции, например депротонирование, по-видимому, проходят на поверхности раздела фаз, а катализатор межфазного переноса просто снижает энергию барьера реакции (как в случае гетерогенного катализа). Более подробно механизм межфазного катализа обсужден в следующем разделе. [c.8]

    Большая часть кинетических измерений выполнена в растворе СН О +СН О ) (Н) в ряде случаев получены данные об обменной способности гетероциклов в "нейтральном" спирте и при катализе реакции триэтиламином.Результаты приведены в таблицах 1-3. [c.613]

    На основании данных, приведенных выше в связи с изотопным обменом кислорода, можно предположить следующий типичный механизм катализа реакций производных карбоновых кислот ионом гидроксония [уравнение (24), рис. 4]  [c.54]

    Однако в большинстве случаев увеличение скорости реакции, наблюдаемое в присутствии катализатора, связано с уменьшением энергии активации Е данной реакции. Для того чтобы это имело место, катализатор должен изменить свойства молекул одного из реагирующих веществ, вступив с ним в химическое соединение. При гомогенном катализе происходит либо взаимодействие катализатора с одним из реагирующих веществ с образованием молекулярного соединения, либо обмен электроном между катализатором и той молекулой, на которую он оказывает свое влияние. При гетерогенном катализе происходят сходные явления. Когда молекула одного из реагирующих веществ [c.19]

    Ионный обмен — это процесс, в котором твердый ионит реагирует с раствором электролита, обмениваясь с ним ионами. Такой обмен происходит в природе, в живом организме ионообменные процессы имеют важное значение и в технике, где иониты применяют для очистки растворов, для улавливания ценных металлов, для разделения различных веществ. Иониты используют в аналитической, биологической и препаративной химии они являются катализаторами многих органических реакций. Возможность ионитов влиять на органические реакции обусловлена наличием в них подвижных ионов или ОН", поэтому иониты могут быть использованы вместо растворенных электролитов в жидкофазных реакциях кислотно-основного катализа. Существенное отличие катализа ионитами от истинного гомогенного катализа в свободном растворе состоит в том, что реакция происходит в ионите и, таким образом, связана с диффузией веществ в ионит и продуктов реакции — из ионита. Кроме того, на реакцию может влиять каркас ионита и ионогенные группы, закрепленные в нем  [c.142]

    В докладе рассматривался вопрос о кислотно-основном катализе реакций водородного обмена. Самый факт такого катализа прежде всего говорит о том, что водородный обмен действительно вызван кислотноосновным взаимодействием — тезис, в обосновании которого Лаборатория изотопных реакций активно участвовала. Большинство параметров, от которых зависит скорость реакций водородного обмена, удалось предвидеть на основе существующей теории кислотно-основного равновесия и катализа Бренстеда. Эти параметры отчетливо выявлены в работах, суммированных в докладе. Вместе с тем сейчас ясно, что теория Бренстеда лишь приближенно описывает кислотно-основные процессы, так как последние не обязательно сводятся к простому переходу протона. Развитию теории будет способствовать накопление нового экспериментального материала.  [c.231]


    Среди наиболее тщательных работ по МФК-реакциям самые ранние, датированные 50-ми и началом 60-х годов, посвящены замещению R—X—— N [69, 73]. Эту же реакцию использовали для фундаментального изучения механизма МФК [4, 63] и кинетики трехфазного катализа [64]. Было изучено множество катализаторов самой разнообразной структуры, и общая разработка этой темы в литературе сопоставима с обсуждением вопросов, связанных с обменом галогенов. [c.119]

    По типу взаимодействия катализатора с реагирующими веществами все каталитические реакции делятся на два класса — окислительно-восстановительное гомолитическое) взаимодей ствие и кислотно-основное (гетеролитическое) взаимодействие. Катализаторами для окислительно-восстановительного катализа служат переходные металлы и оксиды металлов переменной валентности. Общий механизм окислительно-восстановительного катализа заключается в обмене электронами между катализатором и реагентами, который облегчает электронные переходы в реагирующих молекулах. Механизм ионного кислотно-основного катализа заключается в обмене протонами или ионами (анионами в катионами) между катализатором и реагирующими молекулами. Типичными катализаторами служат кислоты (доноры Н+) и основания (доноры ОН-). [c.106]

    Тяжелый кислород 0 — один из наиболее перспективных изотопных индикаторов. Он уже был успешно применен во многих работах для изучения т ших важнейших процессов, как фотосинтез, дыхание животных и растений, окислительные реакции (в частности, окислительный катализ), реакции перекисных соединений и др. Дальнейшее развитие исследований в этих областях с применением 0 сильно затрудняется недостатком сведений об изотопном обмене кислорода, которому до сих пор уделяли слишком мало внимания. Это в равной степени относится к органическим и к неорганическим соединениям, составляющим предмет настоящего сообщения. Изучение обмена кислорода не только необходимо для применения изотопа Окак индикатора, но имеет большой самостоятельный интерес, так как механизм этого обмена тесно связан со все еще очень неясным механизмом переноса кислорода при химических реакциях. [c.245]

    Ферментативный катализ. Это обширная область науки на стыке молекулярной биологии и теории катализа, которая бурно развивается. Ферменты являются биологическими катализаторами они определяют течение всех химических реакций, составляющих обмен веществ в организме. В литературе термины фермент и энзим используются как синонимы. [c.186]

    Механизм кислотно-основного (ионного) катализа в растворах заключается в том, что идет обмен протонами между катализатором и реагирующими веществами, сопровождающийся внутримолекулярными превращениями. При кислотном катализе протон (или положительный ион) переходит сначала от катализатора к реагирующей молекуле, а при основном катализе катализатор служит вначале акцептором протона или донором аниона по отно-щению к молекуле реагента. В последующей стадии каталитической реакции протон перемещается в обратном направлении и катализатор восстанавливает свой состав. Активность катализаторов в кислотно-основном взаимодействии зависит от легкости передачи протона реагенту (кислотный катализ) или отрыва протона от реагента (основной катализ). Активность катализаторов — кислот и оснований возрастает с ростом константы их диссоциации. [c.221]

    Несмотря на большое структурное сходство катализаторов межфазного переноса с поверхностно-активными веществами, они весьма различаются по каталитическому действию. Высокоэффективные катализаторы межфазного переноса обычно являются плохими поверхностно-активными веществами. Кинетические данные и способность ониевых солей ускорять реакции даже в неполярных средах подтверждают предположение, что суть их каталитического действия заключается не в образовании мицелл, а в создании каталитического цикла, включающего обмен ионами. Было показано [9], что реакция между 1-хлор-октаном и цианидом натрия катализируется как анионными поверхностно-активными веществами (например, додецилбен-золсульфонатом натрия), так и неионными поверхностно-активными веществами (например, продуктами реакции додеканола и тетрадеканола с 6 моль этиленоксида) однако скорости реакции при этом в 100—1000 раз ниже, чем при применении четвертичных аммониевых солей. Таким образом, мицеллярный катализ можно, конечно, рассматривать как межфазный, однако ои обладает своей спецификой и далее не будет обсуждаться в данной книге (см. обзоры [10—131). Отметим, однако, что, как правило, поверхностно-активные вещества тормозят реакции в двухфазной системе. Это, очевидно, связано с тем, что образование мицелл изменяет физические характеристики системы и, кроме того, большая часть поверхности раздела фаз занимается поверхностно-активным, веществом, что приводит к вытеснению катализатора межфазного переноса. Именно поэтому для каждой системы существует свой оптимальный размер катиона, когда он еще остается катализатором межфазного переноса, но уже не является поверхностно-активным веществом. [c.16]

    Заметим, что в ходе реакции кислота ВН- - превращается в сопряженное основание В, а основание В — в сопряженную кислоту НВ. Может показаться, что, поскольку эти агенты изменяются в ходе реакции, они не являются истинными катализаторами. Однако простой обмен протонов восстанавливает исходные формы, и завершает каталитический цикл. В водных растворах вода сама может выступать в роли кислоты или основания или даже одновременно в роли кислоты и основания при согласованном катализе. [c.54]

    Механизм Порядок реакции Обмен р-водорода быстрее элн-мннированни Вид основного катализа н/ о Электроноакцепторные заместители при СрГ Электронодонорные заместители при Изотопный эффект уходящей группы или эффект элемента [c.19]

    По -механизму идет кислотный катализ. Например, обмен С1 между 1-фенил-1-хлорэтаном и радиоактивным СГ в нитромегане ускоряется НС1. Скорость реакции v = ([R l] + + A 2[R 1][H 1]. Второе слагаемое соответствует реакции, катализированной НС]. Предполагается переходное состояние R... L..H... I, в котором образование связи Н...С1 способствует разрыву связи R...С1. [c.290]

    В другой работе ЛИР [57] изучен катализ иодом обменной реакции между изомерами монодейтеротолуола и монодейтеро-дифенила и жидким иодистым водородом. И в этом случае катализ объясняется тем, что в тройной системе ароматический углеводород — иодистый водород — иод поляризуется связь Н—J вследствие того, что ион иода склонен образовывать с молекулярным иодом комплексный анион J  [c.64]

    По-видимому, при катализе изомеризации ДММ стабильными радикалами реализуются два последних направления. В комплексе происходит делокализация неспаренного электрона радикала по лиганду — изомеризующейся молекуле основными взаимодействиями, ответственными за парамагнитный катализ, являются обменное и спин-орбитальное. Эти взаимодействия могут увеличивать щель 2г и снимать запрет по мультиплетности, увеличивая вероятность адиабатического пути реакции, но не влияя на энергию активации. [c.384]

    Оказалось, что при применении меченого брома, вводимого в к-бром-нафталин или в катализатор, между ними не наблюдалось обмена брома в ходе реакции обмен идет во много раз медленнее реакции. Из этих данных можно заключить, что в этом случае катализ не связан с переносом брома через катализатор. Примерно те же результаты дало аналогичное исследование реакции бромирования бензола с /пВгз в качестве катализатора. [c.290]

    Во время этого обратимого превращения, если оно идет в тяжелой воде, происходит в радикале обмен водорода на дейтерий как в эноле, так и в самом кетоне. Например, в ацетоне СНз-СО-СНз обмениваются все шесть а-атомов водорода, а в ацетоуксусном эфире СНз-СО-СНг-СООСгНа — пять а-атомов, ближайших к карбонильной группе. Этот обмен идет в присутствии кислот или оснований, которые также катализируют энолизацию. Было найдено [978, 771], что обмен, энолизация, галоидирование и рацемизация кетонов имеют не только сходную кинетику, но и приблизительно одинаковую скорость. Это указывает на то, что перечисленные реакции имеют одну общую медленную ступень с участием растворителя, без которого не мог бы происходить изотопный обмен. Изучение кислотно-основного катализа при обмене и энолизации, влияния на их кинетику замены НгО на ОгО в качестве растворителя и другие данные несомненно указывают на ионизационный механизм этих процессов. Они совершаются путем Переноса протонов (или дейтеронов) между реагирующим веществом и средой с образованием, в зависимости от кислотности среды, промежуточного оксониевого катиона или карбаниона. [c.393]

    Этот процесс продолжается до тех пор, пока пе создадутся условия, в которых рост полимерной цепи прекращается. Прежде же чем переходить к рассмотрению последпего этапа процесса полимеризации, следует остановиться на тех реакциях, которые определяют процесс роста цепи и формирование отдельных макромолекул. Необходимо рассмотреть катализ реакции присоединения, обменные реакции и рав новесие цикл — цепь. [c.164]

    Метан и этан почти совсем не вступают в реакцию при 200° С, но при 235°С СН4 реагирует в два раза быстрее, чем СгН . Неопентан обменивается быстрее, чем пропан, а первичные атомы Н в СзНз обмениваются в шесть раз быстрее, чем вторичные. Более высокая реакционная способность первичных атомов водорода является чертой, резко отличающей эти процессы от катализа на металлах. Кроме того, обмен, как правило, представляет собой стадийную реакцию и первичным продуктом являются -частицы [22]. Приведенная ниже модель, основанная на моноадсорбированных частицах, позволяет объяснить эти факты  [c.73]

    Гетерогенная каталитическая реакция, как всякая химическая реакция вообще, имеет в своей основе электронный механизм, поскольку превращения, вызываемые в реагирующей молекуле каталитической реакцией, определяются перемещением валентных электронов. Однако специфика взаимодействия в гетерогенном катализе проявляется в том, что обмен электронами между реагирующими связями осуществляется через катализатор с участием электронов-катализатора. Электронное взаимодействие на поверхностн определяет энергию и характер возникающей связи. Эти факторы во многом обусловливают скорость и направление катализируемой реакции. [c.146]

    В кинетике гетерогенного катализа различают адсорбцию физическую н адсорбцию химическую (хемосорбцию). При хемосорбции между молекулами газа и твердого тела возникают связи, ио своим свойствам аналогичные химическим, а именно, ковалентные, ионные и координационные. Как и при химических реакциях, при хемосорбции происходит взаимный обмен электронов внешних орбит атомов и возникновение электронного взаимодействия между молекулаами газа и твердого тела. [c.94]

    Гомогенные реакции (процессы) I/I158 4/415 5/465. См, также Гомогенные системы алкилирование 2/380 газификации твердых топлив 1/881 газофазные 1/1158 2/850, 851 гидрирование 2/670 3/84, 737 гидролиз 2/340 горение 1/1169, 1170 детонация 2/46, 67 диеновый синтез 2/101, 102 н реология 4/487 и эффект клетки 2/810, 811 изотопный обмен 2/387, 388 каталитические 1/1158-1161 2/688-691, 756, 757 5/333, 712, 713. См. также Гомогенный катализ [c.585]

    Механизм гомогенной реакции А А + S может быть различным. Если редокс-пара А/А выполняет только функцию переносчика электронов, то имеют дело с редокс-катализом или с го-момедиаторной системой. В этом случае обмен электронами между А и S происходит по внешнесферному механизму. Если же в хо е реакции медиатор одновременно связывает субстрат в аддукт А S, который затем распадается с регенерацией А, то имеют дело с химическим катализом или с гетеромедиаторной системой. В случае химического катализа перенос электронов, как правило, осуществляется по внутрисферному механизму. [c.477]

    Проведение каталитических реакций несложно. Поскольку катализ металлами весьма эффективен и сопровождается лишь небольшой деструкцией, этот метод пригоден для синтеза большого числа меченых соединений различных типов, причем часто можно достигнуть больших величин удельных активностей, чем в методе Вильцбаха [84]. Обменной реакцией с окисью трития на платиновом катализаторе были синтезированы меченые стероиды, пурины, пиримидины и нуклеотиды. [c.685]

    Восстановление бензола и других аренов протекает также в присутствии широкого набора гомогенных катализаторов [100]. Так, бензол восстанавливается водородом в циклогексан при проведении реакции в Ы,Ы-диметилформамиде при 20°С и 10 Па в присутствии примерно 10- моль родиевого катализатора, представленного формулой (99). При использовании каталитической системы типа системы Циглера [никель(П)-2-этилгексаноат — триэтилалюминий] при температурах 150—210°С в присутствии водорода под давлением 7-10 Па о-ксилол восстанавливается в смесь цис- и гране- ,2-диметилциклогексана (соотношение 6,5 3,5). Отмечена высокая стереоселективность [101] при восстановлении о- и лг-ксилолов в ис-диметилциклогексаны при использовании в Качестве катализатора комплекса (100). Отметим, что в случае гомогенного катализа не был обнаружен водородный обмен, кото- [c.391]

    Процессы переноса при генерировании карбениевых ионов охватывают две важнейшие категории реакций. К первой из них относятся реакции межмолекулярного гидридного переноса уравнение (5а) [11], когда гидрид-ион переносится на подходящий акцеп-гор-электрофил, в роли которого выступает обычно другой термодинамически менее устойчивый карбениевый ион. Типичный пример такой реакции приведен в уравнении (10). Аналогичные внутримолекулярные процессы (перегруппировки карбениевых ионов) рассмотрены в разд. 2.7.1.6. В ходе реакции обычно не отмечается обмена между переносимым водородом и подвижными протонами растворителя. Примером, когда такой обмен наблюдался и имел место кислотный катализ на стадии переноса, является реакция между пентаметилбензилкатпоном и пзобутаном [12]. Эту реакцию можно рассматривать как промежуточное звено. [c.519]


Смотреть страницы где упоминается термин Катализ реакций обмена: [c.96]    [c.77]    [c.255]    [c.17]    [c.193]    [c.392]    [c.473]    [c.166]    [c.114]    [c.363]    [c.68]    [c.74]   
Смотреть главы в:

Химические реакции полимеров Том 1 -> Катализ реакций обмена




ПОИСК





Смотрите так же термины и статьи:

Катализ реакции

Реакции обмена

Реакции обменные



© 2025 chem21.info Реклама на сайте