Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глицин содержание в белках

    Основная масса больщинства аминокислот проходит в реакциях обмена через стадии превращений в глутаминовую или аспарагиновую кислоты или аланин. Содержание амидов и этих трех аминокислот в белках, особенно в белках растений, обычно не менее 30%, а в некоторых белках, например в глиадине пшеницы, превышает 50% общего количества аминокислот. Кроме того, в процессах обмена эти три аминокислоты могут синтезироваться из других аминокислот. Глутаминовая кислота образуется из пролина, орнитина и гистидина, аланин— из триптофана, цистина, серина и т. д. Количество этих аминокислот, объединяемых системой дикарбоновых аминокислот, также составляет не менее 30% аминокислот, входящих в состав белковых молекул. Таким образом, не менее 60% аминокислот, содержащихся в молекуле белка, составляют глутаминовая и аспарагиновая кислоты, их амиды, аланин и аминокислоты, связанные с ними прямыми переходами в обмене веществ. Кроме того, аминогруппы других аминокислот, например валина, лейцина, изолейцина, глицина, в результате переаминирования могут переходить на кетоглутаровую кислоту и образовывать глутаминовую кислоту. Следовательно, доля азота, подвергающаяся обмену через эту систему, еще более увеличивается. Эти данные также показывают центральную роль дикарбоновых аминокислот в обмене веществ. [c.257]


    Для птиц незаменимой аминокислотой является глицин. У жвачных животных биосинтез всех НАК производится микроорганизмами кишечного тракта, при зтом необходимы в достаточном количестве соединения азота (аммонийные соли, мочевина). Для человека обеспечение организма НАК — важнейшая задача питания. Высокую биологическую ценность имеют лишь немногие животные белки, такие, как белок куриного яйца или белок материнского молока. Они содержат НАК не только в достаточном количестве, но и в необходимом для человека соотношении. Низкая ценность многочисленных растительных белков связана с небольшим содержанием в них отдельных незаменимых аминокислот (главным образом лизина и метионина). Важными компонентами смешанного корма являются рыбная и соевая мука. В белке соевой муки и в белке кормовых дрожжей мало метионина, в кукурузе — лизина и триптофана. Дефицит может компенсироваться добавлением недостающей аминокислоты илн подходящей комбинацией других белков. [c.19]

    Альбумины. Аминокислотный состав альбуминов разнообразен и характеризуется очень низким содержанием или полным отсутствием глицина и сравнительно высоким содержанием цистина и метионина. Растворимы в воде и осаждаются из растворов при нейтральной реакции лишь при полном насыщении сернокислым аммонием. Альбумины — белки преимущественно животного происхождения. К ним относятся лактальбумин, овальбумин, серум альбумин, миоальбумин и миоген. [c.175]

    Исследования Замечника и многих других (см. выше) позволили нарисовать весьма правдоподобную картину той роли, которую РНК играет в биосинтезе белков. Однако зависимость белкового синтеза от скорости синтеза и распада РНК пока еще трудно понять. Так, например, наряду с системами, в которых между скоростью синтеза РНК и интенсивностью белкового синтеза существует, по-видимому, зависимость, известны и такие системы, в которых скорости синтеза белка и РНК как будто не связаны между собой. Печень представляет собой очень своеобразный пример системы, в которой при изменении аминокислотного состава пищи наступают довольно сложные сдвиги в метаболизме РНК. Мы уже упоминали (стр. 111) о том, что при скармливании крысам пищи с недостаточным содержанием белка их печень быстро теряет белки, РНК и фосфолипиды. Следовательно, состав диеты оказывает регулирующее воздействие на метаболизм каждого из перечисленных соединений. В случае РНК оно было подробно изучено в серии опытов, проведенных Манро и его сотрудниками. В первых своих опытах они установили [140], что ног.лощение Р рибонуклеиновой кислотой, по-видимому, зависит от энергетического фонда пищи. Резкие же колебания в количестве съеденного белка не оказывали влияния на включение Р данные эти согласовывались с более ранними наблюдениями других авторов [141]. Казалось бы, эти факты указывают на отсутствие связи между содержанием белка в пище и скоростью синтеза РНК. На первый взгляд это трудно увязывается с теми значительными изменениями количества РНК в печени, которые наступают при сдвигах в белковой диете. Поэтому было необходимо выяснить, каким образом поглощение белка может влиять на количество РНК, не изменяя при этом скорости синтеза. Для этого бы.ти поставлены новые опыты, в которых изменения в обмене РНК и белка были прослежены с помощью Р и 2-С -глицина [142]. Оказалось, что РНК поглощает изотопы независимо от содержания белка в диете только в том случае, ес.ли животных кормят на протяжении всего опыта. Если же крыс после обильной белковой пищи заставляют голодать, то включение Р в РНК падает очень заметно еще сильнее снижается включение глицина в РНК. Исходя из различных данных, можно думать, что это явление [c.288]


    Для получения эластина, структурного белка эластических волокон, используют обычно шейную связку быка. По своим свойствам эластин напоминает коллаген, но отличается от коллагена еще большей устойчивостью к действию протеолитических ферментов, кислот и оснований. Эластин подобно коллагену также характеризуется высоким содержанием глицина. Оба белка содержат примерно одинаковые количества этой аминокислоты, но содержание пролина и оксипролина в эластине намного ниже, чем в коллагене (см. табл. 1) [51]. [c.214]

    Вопросу анализа аминокислот методом хроматографии на бумаге посвящено большое число работ советских и иностранных авторов. Однако почти все они связаны с разделением аминокислот белков и других биологических препаратов [61. Наша попытка применить их для анализа мелассы не дала положительных результатов, что можно объяснить мешающим действием остальных компонентов мелассы, ио отношению к которым содержание отдельных аминокислот составляет лишь 0,1—3 вес. %. Описанный в литературе метод 17, 81, состоящий в сорбции аминокислот на катионите с последующей их элюцией и идентификацией на бумаге неудобен, так как требует сложной специальной аппаратуры и чрезмерно длителен. Первой частью нашего исследования было хроматографическое разделение искусственной смеси из десяти аминокислот, приблизительно имитирующей аминокислотный состав мелассы [1, 81. Смесь включала лизин, аргинин, серии, глицин, аспарагиновую и глютаминовую кислоты, а-аланин, валин, метионин и лейцин. Растворы аминокислот готовили в 15%-ном этиловом спирте с концентрацией 0,5—1 у аминокислоты в 1 мкл. [c.212]

    Коллаген — основной фибриллярный белок кожи, сухожилий, хрящей, костей, роговицы глаза, стенок артерий и других тканей. Коллаге-новые фибриллы — важный компонент межклеточного вещества, цементирующего клетки в тканях (важными связующими веществами являются также гиалуроновая кислота и другие мукополисахариды). От большинства других белков коллаген отличается высоким содержанием остатков пролина и оксипролина, которые составляют 25% всех аминокислотных остатков, а также глицина, остатки которого составляют 34%. В процессе синтеза коллагена вначале образуется белок проколлаген. Он не содержит оксипролина и коллаген образуется пз него при гидроксилировании примерно половины остатков пролина. Для протекания реакции гидроксилирования необходим витамин С. [c.434]

    Исследование аминокислотного состава белка яиц пе обнаруживает достоверных различий в содержании аминокислот по группам как в одном поколении, так и при сравнении первого и второго поколений мен<ду собой. Исключением является несколько большее содержание серина, аспарагиновой и глютаминовой кислот и глицина в белке яиц кур 2-й группы первого поколения в сравнении с этой же группой второго поколения (табл. 25). [c.104]

    Уменьшение выхода для связывания белков при низких pH и температуре можно компенсировать увеличением продолжительности реакции. Остающиеся оксирановые группы, способные к дальнейшему связыванию, блокируются, например, 24-часовой обработкой 2 М глицином или 2-аминоэтанолом, предпочтительно при pH > 8,5 и температуре 23 °С. Наряду с водными растворами, можно работать Б присутствии также органических растворителей, таких, как диметилформамид или диоксан (содержание их в конечной смеси должно соответствовать 50%)  [c.195]

    Склеропротеины (альбуминоиды). Эта группа фибриллярных белков, выполняющих в организме животных роль опорных и покровных веществ. Они практически нерастворимы и весьма устойчивы к химическим и ферментативным воздействиям. Скле ропротеины характеризуются тем, что в них отсутствуют неко торые аминокислоты, но содержание других высокое. Например много глицина в коллагене и фиброине, цистина в кератине) К склеропротеинам относятся коллаген, эластин, ретикулин кератины, нейрокератин, фиброин шелка, конхиолин и спонгин [c.176]

    Преломление, обусловленное молекулами органических соединений, представляет собой сумму преломлений их атомов. Это верно и в отношении белков. К сожалению, однако, это обстоятельство не может быть использовано для изучения структуры белков, так как содержание углерода, азота, водорода и кислорода в различных белках почти одинаково. Кроме того, число отдельных атомов в молекуле белка настолько велико, что участие одного атома или группировки атомов в общем преломлении молекулы ничтожно мало. Те же соображения относятся и к способности белков вращать поляризованный луч света [108, 109]. Поскольку все аминокислоты, за исключением глицина, являются оптически активными соединениями и асимметрические атомы углерода аминокислот остаются асимметрическими и в пептидной цепи, полипептиды и белки представляют собой оптически активные соединения. Знак и величина удельного вращения белка зависят от числа аминокислот в белке и от их строения. Общая величина, получающаяся в результате взаимодействия сотен молекул аминокислот, не позволяет поэтому сделать какие-либо выводы относительно расположения аминокислот и относительно других деталей, касающихся внутренней структуры белка. Удельное вращение белков достигает минимума в их изоэлектрической точке. Оно колеблется между —30 и —70° [109]. Значительно большие величины, вплоть до —313°, были обнаружены в желатиновых гелях [110]. [c.139]


    Изучение обмена вешеств в опухолевых клетках при применении саркомицина показало , что этот антибиотик подавляет включение фосфора в аденозинмоно-, -ди- и -трифосфат и нуклеиновые кислоты асцитных клеток. Кро.ме того, он подавляет также включение глицина в белки этих клеток в большей стеиени, чем в белки нормальных клеток. Было отмечено соответствие между лечебным эффектом саркомицина и увеличением числа клеток, содержащих гликоген, а также увеличением содержания гликогена в отдельных клетках. Саркомицин и те его аналоги, которые обладают противоопухолевой активностью, сильно подавляют анаэробную ферментацию клеток асцитной карциномы Эрлиха, тогда как неактивные аналоги этим свойством не обладают. В связи с этим высказано предиоложение, что одной из причин противоопухолевого действия саркомиципа является подавление им анаэробной ферментации э. Сульфгидрильные соединения (глутатион, цистеин, тногликолят и др.) значительна снижают бактериостатическое действие (а также токсичность) саркомицина, но почти или совсем не оказывают влияния на его противоопухолевое действие  [c.135]

    Таким образом, изучение содержания отдельных аминокислот у видов рода копеечник позволило обнаружить, что они накапливают в преобладающих количествах аспарагиновую и глутаминовую кислоты, аланин, пролин, фенилаланин, метионин, валин и аспарагин, а также в отдельных органах растений гистидин, глицин, серии, лейцин, изолейцин, аргинин, треонин. Определение содержания свободных аминокислот и аминокислот белка у пяти видов рода копеечник в разные фазы вегетации позволило выявить их изменения в процессе индивидуального развития растения. Общим для всех видов является максимальное содержание [c.56]

    Для репродуктивных органов исследуемых видов характерно снижение содержания небелкового азота и свободных аминокислот от бутонов к цветкам и далее к плодам. Количество аспарагина, а для копеечника Гмелина также глутамина и глицина возрастает в течение вегетационного периода. Содержание общего, белкового азота и аминокислот, входящих в состав белка, уменьшается от бутонов к цветкам. С момента появления плодов количество этих соединений увеличивается, достигая максимума в зрелых плодах. [c.60]

    Из данных та-бл. 12 и 13, следует, что общее-содержание белка в отрезках за 24 часа инкубации снижается в условиях как гипотонической, так и слабогипертонической среды. В отрезках, обработанных ауксином, содержание белка ниже, чем в контрольных. С увеличением продолжительности инкубации в условиях гипотонической среды ауксин не влияет, а в среде с манни-гом тормозит снижение общего содержания белка в отрезках. Включение глицина-С в белки отрезков мезокотилей происхо- [c.170]

    Белки коллагеновой группы характеризуются относительно высоким содержанием остатков пролина и оксипролина. Как показали последние исследования, эти остатки вместе с остатками глицина скапливаются на отдельных участках молекулярных цепей. На этих учасшах возникают конфигурации, имеющие много общего с конфигурацией цепи поли-Ь-пролина. [c.543]

    Анализы высокоочищенных субъединиц [79, 111] подтверждают, что субъединицы с высокими молекулярными массами (90 000, 132 000, 144 000 Да) имеют повышенное содержание глицина, но количество его у разных белков может варьировать. Кроме того, содержание лизина у них выше, чем у других глютенинов или глиадинов, но общее содержание основных аминокислот изменчиво. Имеются также многочисленные мелкие различия между этими тремя субъединицами. Кроме этого, их состав не-идентичен тому, который установили Данно и др. [57] для субъединиц эквивалентной молекулярной массы. Но эти авторы разделяли фракции по их молекулярной массе таким образом, была выявлена гетерогенность этих фракций [57, 98, 111], особенно субъединиц с высокой молекулярной массой [92]. [c.206]

    Среди структурных белков особое место занимают кератины, поскольку они были первыми белками, изученными Астбюри метолом диффракции рентгеновских лучей. Их нерастворимость и биохимическая инертность не способствовали, однако, достаточному уровню активности исследований. Кератины образуют защищающие от внешней среды барьеры типа рогов, копыт, когтей, волос, шерсти и перьев. В перьях содержатся р-структуры, в то время как для волос и шерсти характерны а-спиральные структуры. Последние состоят из белков с низким содержанием серы эти микрофибриллы окружены матрицей двух других типов, одной с высоким содержанием глицина и тирозина, а другой—с высоким йроцентом серы. Во время синтеза прокератина в эпителиальных клетках в богатых серой белках имеются большие количества тиольных групп, образующих впоследствии дисульфидные связи, делающие кератин более жестким. Потерю волосами механической прочности при их обработке отбеливающими или восстанавливающими агентами (завивка-перманент) можно частично объяснить за счет расщепления дисульфидных связей. Восстановление и карбо-ксиметилирование дисульфидных связей (см. разд. 23.3.3) сделали возможным солюбилизацию и фракционирование некоторых компонентов кератина для последующего секвенирования [29]. В одном [c.572]

    Данные о специфичности транспорта аминокислот через биомембраны клеток были получены при анализе наследственных дефектов всасывания аминокислот в кишечнике и почках. Классическим примером является цистинурия, при которой резко повышено содержание в моче цистина, аргинина, орнитина и лизина. Это повышение обусловлено наследственным нарушением механизма почечной реабсорбции. Цистин относительно нерастворим в воде, поэтому он легко выпадает в осадок в мочеточнике или мочевом пузыре, в результате чего образуются цистиновые камни и нежелательные последствия (закупорка мочевыводящего тракта, развитие инфекции и др.). Аналогичное нарушение всасывания аминокислот, в частности триптофана, наблюдается при болезни Хартнупа. Доказано всасывание небольших пептидов. Так, в опытах in vitro и in vivo свободный глицин всасывался значительно медленнее, чем дипептид глицилглицин или даже трипептид, образованный из трех остатков глицина. Тем не менее во всех этих случаях после введения олигопептидов с пищей в портальной крови обнаруживали свободные аминокислоты это свидетельствует о том, что олигопептиды подвергаются гидролизу после всасывания. В отдельных случаях отмечают всасывание больших пептидов. Например, некоторые растительные токсины, в частности абрин и рицин, а также токсины ботулизма, холеры и дифтерии всасываются непосредственно в кровь. Дифтерийный токсин (мол. масса 63000), наиболее изученный из токсинов, состоит из двух функциональных полипептидов связывающегося со специфическим рецептором на поверхности чувствительной клетки и другого — проникающего внутрь клетки и оказывающего эффект, который чаще всего сводится к торможению внутриклеточного синтеза белка. Транспорт этих двух полипептидов или целого токсина через двойной липидный слой биомембран до настоящего времени считается уникальным и загадочным процессом. [c.426]

    Что касается аминокислот, входящих в состав гликопротеинов, то последние представлены чаще всего во всем их разнообразии, хотя можно отметить несколько интересных особенностей. Так, содержание ароматических и серусодержащих аминокислот обычно очень невелико. Отмече-но , что все известные гликопротеины по аминокислотному составу могут быть разделены на две довольно определенные группы. Гликопротеины одной группы, содержащие небольшой процент сахаров и близко стоящие к белкам, имеют обычный стандартный набор аминокислот к этой группе относятся гликопротеины плазмы и многие другие углеводсодержащие белки. Гликопротеины второй группы содержат относительно меньше аминокислот, но состав этих аминокислот более специфичен наиболее характерным признаком этой группы гликопротеинов является очень высокая доля оксиаминокислот (серина и треонина), которые в отдельных случаях, например в групповых веществах крови, составляют половину всех аминокислот аномально высоким бывает также содержание пролина и глицина.  [c.568]

    Основную часть мономерных звеньев в молекуле коллагена составляют глицин, пролин и оксипролин. Хотя содержание амино- и иминокислотных остатков меняется от образца к образцу, в коллагене позвоночных и беспозвоночных содержание глицина остается постоянным и составляет приблизительно треть всех звеньев. Несмотря на различия в составе коллагенов, существует взаимосвязь между темиературой плавления (опре-деленной при фиксированной полной концентрации белка) и содержанием иминокислот. [c.133]

    Точную аналогию с определением соответствующих элементов с помощью изотопного разбавления представляет использование меченых атомов для определения соответствующих соединений, присутствующих в смеси. Количественное определение содержания данного вещества в смеси обычными методами требует реагента, специфичного для этого вещества. Если такого реагента не существует, то необходимо количественно выделить индивидуал)эНое соединение из смеси. Применение предположительно специфического реагента опасно при наличии в смеси соединений со сходной структурой. Выделение индивидуального соединения обычно ставит нас перед альтернативой выделение малого количества рассматриваемого соединения без примесей либо полное его выделение с примесями чистота и полнота выделения взаимно исключают друг друга. В качестве примера можно привести исследование [1701] гидролизатов белков, содержащих около 24 а-аминокислот, количественное содержание которых должно быть определено для установления структуры белка. При использовании метода изотопного разбавления, представляющего единственный метод полного анализа, необходимо синтезировать каждую из имеющихся а-аминокислот в изотонически обогащенной форме. Например, глицин, содержащий обогащенный азот, образует неразделимую смесь с необогащенным глицином. Выделение малых количеств чистого глицина с последующим измерением отношения в нем позволит точно оценить содержание глицина в смеси. [c.114]

    Р-Структура может образоваться только при наличии в составе полипептида соответствующих аминокислот, расположенных в определенной последовательности. Необходимо, в частности, чтобы К-группы аминокислотных остатков имели сравнительно небольшие размеры. Так, в фиброине шелка и других р-керати-нах, например в белке паутины, наблюдается очень высокое содержание глицина и аланина-аминокислот с наименьшими по размеру К-группами. Примечательно, что в фиброине шелка каждой второй аминокислотой является глицин. [c.175]

    Коллагены содержат около 35% остатков глицина и примерно 11% остатков аланина (необьмно большие количества этих аминокислот). Еще более характерным отличительным признаком коллагена служит высокое содержание пролина и 4-гидроксипролина (рис. 7-13)-аминокислоты, которая, за исключением коллагена и эластина, редко встречается в белках. В сумме на долю пролина и ги-дроксипролина приходится около 21% всех аминокислотных остатков коллагена. Необьмный аминокислотный состав коллагена с значительным преобладанием четырех аминокислот над всеми другими определяет относительно низкую питательную ценность желатины как пищевого белка. Самые лучшие пищевые белки содержат все 20 аминокислот, и в частности 10 аминокислот, образующих группу так называемых незаменимых аминокислот, которые должны [c.177]

    АЛЬБУМИНЫ — простейшие представители природных белков, присутствующие во всех растит, и животных тканях в отличие от глобулинов, с к-рыми они составляют группу растворимых белков, растворяются в гюлунасыщенном (50% насыщения) р-ре сернокислого аммония и в дистиллированной воде. Изоэлоктрич. точка А. в пределах pH 4,6—4,8 мол. в. не превышает 75 ООО. Вое А. — глобулярные белки. А. способны к образованию хорошо оформленных кристаллов в электрофоретич. поле А., как правило, могут быть ра.зде.лены на 2 и более комнонептов. А. растворимы в к-тах, щелочах, при нагревании свертываются нри гидролизе образуют различные аминокислоты, для состава к-рых характерно отсутствие или относи 1 ельно низкое содержание глицина (не более 2%). А. богаты серусодержащими и дикарбоно-выми аминокис.потами. В живых тканях А. обычно находятся в виде соединений с липидами, углеводами и др. белками содержатся в белке яиц, сыворотке крови, мо,локе, семенах растений. А. получают из плазмы крови фракционир, осаждением при пизких темп-рах этот препарат широко применяют в медицинской практике, особенно для питания, путем введения в кровь. Кроме того. А, получают также из крови животных (сывороточный А.), отделением белка яиц от желтка (яичный А.), а также из молочной сыворотки при нагревании до 75° (молочный А.). А. применяются в фармацевтич., кондитерской, текстильной и др. отраслях промышленности и для осветления вии. [c.68]

    Укажем только на следующее для точного определения аминокислотного состава белка его нужно подвергнуть гидролизу (в вакуумированной запаянной ампуле с 6н. НС1 при температуре 110°) в течение 22 и 70 час [26]. При этом для глицина, аланина, валина, лейцина, изолейцина, метионина (с внесением поправки на 10%-е расщепление при хроматографии), фенилаланина, гистидина и лизина нужно использовать полученное при анализе содержание аминокислоты (в 22- или 70-часовом опыте). В то время как для аспарагиновой и глутаминовой кислоты, серина, треонина, пролина, тирозина и аргинина, которые частично разрушаются при гидролизе (по реакции 1-го порядка), их содержание рассчитывается путем экстраполяции на нулевое время по формуле [c.149]

    Л. разного нроисхоягдения, обладая биологич. активностью одного и того же характера, отличаются несколько по интенсивности действия, атакже имеют небольшие различия в аминокислотном составе. Л. куриных яиц относится к числу наиболее изученных белков, и все приводимые здесь данные относятся к Л. этого происхождения. Мол. в. ок. 14 800, содержание азота 18,7%. Молекула Л. состоит из одной полипептидной цепи, включающей 127—130 аминокислотных остатков, из них И глицина, 10 аланина, [c.483]

    Среди индивидуальных органических соединений определены органические кислоты (муравьиная, уксусная, фумаровая, щавелевая, молочная, бензойная и др.), жиры, белки, аминокислоты (глицин, аланин, гистидин, аргинин, фенилаланин, тирозин, аспарагиновая и глутаминовая кислоты и др.), углеводы (полисахариды, в частности, полиуроновые кислоты и их производные — полисахара), полифенолы, альдегиды, сложные эфиры, воска, смолы, лигнин и др. Многие из них растворимы в воде и могут образовывать комплексные соединения с ионами металлов. Способность гумусовых веществ к образованию внутрикомплексных соединений (хела-тов) с рядом катионов объясняется наличием в структуре гумуса гидрофильных групп. Наивысшей склонностью к образованию же-лезо-гумусовых комплексов типа хелатов обладают фульвокислоты и близкие к ним по природе гуминовые кислоты иэ. сильноподзолистой почвы, характеризующиеся высоким содержанием гидрофильных групп. [c.25]

    В настоящее время в результате применения новых методов исследования установлено, что в состав белковых молекул входят следующие аминокислоты глицин, аланин, валин, лейцин, изолейцин, серин, треонин, цистин, цистеин, метионин, аспарагиновая кислота, глутаминовая кислота, аргинин, лизин, оксилизин, фенилаланин, тирозин, пролин, оксипролин, гистидин и триптофан. Ввиду того что количество азота этих аминокислот составляет в некоторых исследованных белках более 99 % общего содержания азота, нет оснований предполагать наличие в этих белках заметных количеств каких-нибудь других еще не известных соединений. Эти данные, однако, нельзя обобщать и переносить на другие белки. Об этом свидетельствует хотя бы нахождение таких соединений, как аминоэтанол — в гидролизате грамицидина (см. гл. XV) — и диодтирозин и дибромтирозин — в гидролизате кораллов [59] и спонгина [60]. [c.30]

    Натуральный шелк получается из коконной пряжи личинок тутового шелкопряда (Bombyx mori). Шелковое волокно представляет собой двойную нить из высокоориентированного фибриллярного белка фиброина, скрепленную веществом нефибриллярной структуры — серицином. Оба белка имеют различный аминокислотный состав. Для фиброина характерно высокое содержание глицина, аланина, серина для серици-на — наличие больших количеств серина, глицина, аспарагиновой кислоты. [c.164]

    В динамике накопления отдельных аминокислот у разных видов остролодочников наблюдаются следующие тенденции. Содержание свободных аминокисло 1 снижается от фазы бутонизации к фазе плодоношения. Особенно ярко это проявляется на содержании серина, глицина, глутаминовой кислоты, аланина, пролина, тирозина. Исключение составляет цистин, количество которого возрастает от начальных фаз развития к конечным (см. табл. 5). Рассматривая аминокислоты, входящие в состав белка, следует отметить следующее. Их качественный состав не зависит ни от вида, нн от органа, ни от фазы развития, ни от места произрастания. В условиях Новосибирска, как и в Юго-Восточном Алтае, в белках были обнаружены следующие аминокислоты цистин, гистидин, лизин, аргинин, аспарагиновая кислота, серин, глицин, глутаминовая кислота, треонин, аланин, пролин, тирозин, триптофан, метионин- -валин, фенилаланин, лейцин+изолейцин, что свидетельствует о постоянстве качественного состава аминокислот белка у представителей рода остролодочник. [c.73]

    В процессе вегетации содержание аминокислот белка листьев снижается от фазы бутонизации к фазе плодоношения, особенно сильное уменьшение наблюдается от фазы цветения до фазы созревания. Такая закономерность наблюдается как в изменении содержания суммы аминокислот, так и количества аспарагиновой кислоты, глицина, глутаминовой кислоты, аланина, пролина, тирозина, лейцинов (табл. 7). [c.75]


Смотреть страницы где упоминается термин Глицин содержание в белках: [c.83]    [c.30]    [c.31]    [c.330]    [c.194]    [c.432]    [c.161]    [c.204]    [c.429]    [c.629]    [c.293]    [c.27]    [c.655]    [c.71]    [c.64]    [c.73]   
Химия природных соединений (1960) -- [ c.436 , c.470 , c.483 ]




ПОИСК





Смотрите так же термины и статьи:

Белки содержание

Белки тканей, содержание аланина и глицина

Глицин

Глициния

Крупный рогатый скот содержание аланина и глицина в белках



© 2025 chem21.info Реклама на сайте