Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Капролактам свойства

    Чистота е-капролактама является важнейшим фактором. Наличие влаги в е-капролактаме в сильной степени препятствует полимеризации вследствие разложения катализатора в ее присутствии. Поэтому перед полимеризацией е-капролактам тщательно высушивают путем барботирования через него инертного газа при температуре выше 100°С или под вакуумом. С увеличением количества катализатора скорость полимеризации возрастает, однако показатели физико-механических свойств полимера значительно ухудшаются уменьшается и его выход. Оптимальная концентрация каталитической системы равна 0,6 мол. % (от количества е-капролактама) при эквимольном соотношении компонентов. [c.82]


    Полиамиды и их свойства. Наиболее типичным представителем этой группы полимеров является капрон. Капрон можно рассматривать как продукт конденсации аминокапроновой кислоты ЫНз— —СН2—(СН2)4—СООН. Аминокапроновая кислота относится к органическим соединениям со смешанными функциями и содержит кроме кислотной группы —СООН аминогруппу —NH2, обладающую основными свойствами. Помимо возможного взаимодействия между отдельными молекулами этого соединения, капроновая кислота реагирует в пределах одной молекулы ( голова с хвостом ), образуя гетероцикл — капролактам (см. гл. 14)  [c.487]

    При исследовании плотности и вязкости смесей капролактама и серной кислоты (моногидрата) были зафиксированы пики этих показателей на графиках свойство — состав, соответствующие следующим отношениям серная кислота капролактам — 1 1, 2 3, 1 2 [20] [c.159]

    Применение приведенной выше методики для ряда полимеров дает хорошие результаты и позволяет сравнительно легко и надежно идентифицировать полимеры. Однако полярографический метод идентификации нельзя, конечно, считать единственным и универсальным методом, позволяющим полностью решить сложный вопрос о химической природе высокомолекулярного соединения. В некоторых случаях этот метод малоэффективен, например для поликапролактама, образующего при деполимеризации капролактам, не восстанавливающийся на ртутном капающем электроде и не присоединяющий брома. Получающийся нитропродукт не может служить надежным и единственным показателем для идентификации данного полимера. Аналогичная картина наблюдается также для полиуретана и ацетилцеллюлозы. В этих случаях определение) по описанной методике фактически должно сводиться к наблюдению за поведением образцов при сухой перегонке, а также к исследованию некоторых специальных свойств раствора, продуктов сухой перегонки. [c.219]

    Синтез и полимеризация е-капролактама были впервые осуществлены в конце XIX в. В 1930 г. Карозерс исследовал свойства волокна, полученного из полимеров капролактама, а в конце 40-х годов в результате работ Шлака в Германии было налажено первое промышленное производство поли-е-капро-амида, известного под названием найлона-6. Практически весь вырабатываемый капролактам идет на получение найлона-6, который наряду с его предшественником найлоном-6,6 является одним из важнейших полиамидов, используемых в производстве синтетических волокон (гл. 9). В 1969 г. доля полиамидных волокон в общем объеме мирового выпуска синтетических волокон (4,4 млн. т) составляла 41%, и хотя их абсолютное потребление продолжает возрастать, в ближайшем будущем они по объему производства переместятся на второе место после полиэфирных волокон . Доля найлона-6 в структуре мирового потребления полиамидных волокон приближается к 40%, однако для отдельных стран и регионов соответствующие цифры сильно различаются между собой. Так, вследствие главным образом исторических причин на долю найлона-6 приходится около 20% потребления полиамидных волокон в Великобритании, 50% — в странах Европейского экономического сообщества и 25% — в США, тогда как для Японии эта величина равна 75%. [c.219]


    Выпуск синтетических смол и пластических масс в нашей стране за последнее десятилетие дважды удваивался, в дальнейшем сохранится такая же тенденция, причем с каждым годом появляется все больше новых полимеров с различными свойствами. Важнейшими по масштабам производства являются полиамидные материалы, в частности капрон и нейлон, используемые для изготовления шинного корда, технических изделий и товаров бытового назначения. Основными полупродуктами при получении полиамидных материалов являются капролактам, адипиновая кислота и гексаметиленди-амин. [c.214]

    В этом обзоре описаны свойства и методы получения гидроксиламина и циклогексаноноксима, условия его перегруппировки в капролактам и новые пути синтеза капролактама из адипонитрила, фурфурола, ацетилена и других органических соединений. Приведенные в этом обзоре данные достаточно полно характеризуют различные возможности синтеза капролактама и позволяют сравнивать между собой разные методы его получения. [c.419]

    При наличии функциональных групп, двойных связей или легко отщепляемых атомов в макромолекулах полимеров возможно протекание и других реакций с низкомолекулярными соединениями, приводящих к образованию полимеров с новыми свойствами. К числу таких реакций относятся реакции с ненасыщенными мономерами (стирол, метилметакрилат и др.) и циклическими соединениями (окись этилена, е-капролактам и др.). [c.202]

    Изучение изменчивости микроорганизмов необходимо для интенсификации биохимической очистки сточных вод, для получения новых разновидностей микроорганизмов, обладающих нужными свойствами. Так, например, выведены штаммы споровых бактерий, разлагающих капролактам, — компонент сточных вод предприятий по производству капрона. [c.230]

    Капролон при контакте с питьевой водой более суток незначительно изменяет ее органолептические свойства (вкус и запах), выделяет в воду органические окисляющиеся соединения, в том числе капролактам [50]. Миграция капролактама в воду при 20°С составляет 2,25 мг/л (1 сут), 6,95 мг/л (3 сут) и 9,5 мг/л (10 сут), а при 37 С соответственно 6,0, 8,25 и 22,5 мг/л. [c.44]

    На практике для блокирования чаще всего используют фенол, грег-бутанол, этиленгликоль, триметилолпропан, капролактам [488]. Основные свойства наиболее распространенных блокированных изоцианатов приведены в табл. 28. По сравнению с исходными мономерами они характеризуются существенно меньшими активностью и токсичностью и используются как адгезивы горячего отверждения при Т > Гд. [c.137]

    КАПРОЛАКТАМ, ЕГО ПОЛУЧЕНИЕ И СВОЙСТВА [c.7]

    Приложение 1. Теплофизические свойства 8-капролактама и фазовое равновесие в системе е-капролактам — вода [c.193]

    В полученном полимере содержится от 8 до 14% мономера, при этом, чем выше температура реакции, тем больше мономера и олигомеров присутствует в полимере. Мз такого полимера трудно получить изделия с хорошими свойствами, поэтому при производстве поликапроамида низкомолекулярные соединения и е-капролактам экстрагируют. Однако при длительном нагревании полимера при высокой температуре в нем снова образуется некоторое количество мономера. [c.216]

    Исходным сырьем для получения волокна капрон является капролактам — белое, горючее кристаллическое вещество, обладающее следующими свойствами  [c.99]

    Высокие темпы роста производства синтетических волокон стали возможными по ряду причин. Во-первых, эти волокна обладают важными физико-механическими свойствами и с большим экономическим эффектом заменяют натуральные текстильные волокна при изготовлении технических изделий во-вторых, они широко используются в смесях с шерстью, хлопком, льном, так как улучшают ткани и трикотажные изделия в-третьих, благодаря выработке высокообъемных, эластичных, комбинированных нитей и пряжи появились модные в настоящее время изделия (свитера, женские кофты, костюмы типа джерси и т. п.), пользующиеся большим спросом в-четвертых, в результате технического прогресса в области тяжелого органического синтеза стали дешевле и доступнее исходные материалы (капролактам, диметилтерефталат, нитрил акриловой кислоты и т. д.). [c.19]

    Сыпучие материалы — ацетаты целлюлозы, капролактам, щелочная целлюлоза, сульфат цинка обладают специфическими свойствами, требуют особых транспортных средств. Рассмотрим перевозку таких грузов на примере щелочной целлюлозы. Для щелочной целлюлозы характерна малая насыпная масса (насыпной вес), высокая влажность, относительно быстрое подсыхание. В связи с этим при перемещении щелочной целлюлозы необходимо строго соблюдать температуру и выдерживать время нахождения ее в пути. В качестве транспортирующих устройств применяют непрерывно действующие ленточные и пластинчатые конвейеры или люлечно-ковшевые конвейеры с опрокидывающимися ковшами. [c.192]

    Эти причины заключаются в стремлении достигнуть макси-.мального выхода волокна в расчете на исходный сравнительно дорогой капролактам и улучшить некоторые свойства волокна (гибкость, эластичность, гриф). Наконец, удаление мономера из расплава или получение расплава поликапроамида с небольшим содержанием низкомолекулярных соединений значительно упрощает технологический процесс. При стандартном способе получения полиамидного волокна удаление низкомолекулярных фракций осуществляют последующей обработкой готового волокна. Техно- [c.157]


    В результате исследования процесса полимеризации регенерированного капролактама типа П-Э-лактама, проведенной как в лабораторных, так и в производственных условиях, было установлено, что в тех случаях, когда используемый для полимеризации капролактам содержит не более 20% регенерированного лактама, основные свойства получаемого полимера, а также текстильные [c.621]

    Свойства и применение. Является стойкой в азотной кислоте (до 60%) прн температуре не выше 50 °С. По коррозионной стойкости в горячей и кипищей 10—50%-ной азотной кислоте не уступает стали 08Х18Н10Т. Стонкан в 40%-ной фосфорной и 50%-ной уксусной кислотах до температуры 80°С, Может заменять хромоникелевые стали 18—10 прн изготовлении оборудования для сред средней агрессивности сборников (70%-ные растворы при 60 °С, 70%-ные карбамида сульфата аммония при 80 °С), промывной башни нитроолеумного отделения — 60—65%-иая азотная кислота при 40 °С, окислительной башни — 55%-нан азотная кислота прн 30°С, трубопроводов— 47%-ная азотная кислота при 40 °С. Рекомендуется для изготовления котлов. железнодорожных цистерн, перевозящих капролактам, нитрат аммония, желтый фосфор, 50%-ную азотную кислоту [14]. Сварное оборудование может эксплуатироваться в интервале от —50 до - -300°С. [c.324]

    Например, адсорбировавшийся нитроциклогексанол десорбируют метанолом, а капролактам — кипящим метиленхлоридом или этанолом. Сорбированные ПАВ на 95 % отмываются 88%-м изопропиловым спиртом в три ступени по 0,5 ч (75 °С). От ОП-7 уголь регенерируют горячим (68 °С) этанолом, при этом регенерация проходит почти полностью. Стандартный эмульгатор десорбируется 7 5%-м раствором ацетона на 96 % за 12 ч при затратах ацетона — 0,08 м /м в расчете на 1 % регенерации. Ацетон фильтруют через слой активного угля с линейной скоростью 0,25 м/ч. Элюат ректифицируют, а остатки ацетона отдувают 2-3 ч водяным паром (0,5-1 кг/кг АУ). Свойства сорбента сохраняются после проведения десятков циклов сорбция— десорбция. [c.580]

    Для многих ингредиентов про.мышленных сточных вод, например для соединений свинца, мышьяка, ртути, никеля, кобальта, кадмия, и для таких веществ, как тетраэтилсвинец, гексоген, ацетон, метанол, диметилформамиод, капролактам и др., не характерно неблагоприятное влияние на органолептические свойства воды или оно проявляется при весьма высоких копцеп-трациях. С увеличением количества сточных вод промышленности органической химии загрязнение водоема веществами, способными ухудшить органолептические свойства воды, быстро нарастает, как видно из табл. 9. [c.168]

    Свойства. Е-Капролактам (К.) — кристаллы белого цвета т. пл. 68—70° С, т. кип. 262° С/760 мм рт. ст., 139/12 (1. чм рт. ст.г й133,3 н/м ) Иц 1,4768 теплота сгорания при 20 и 75° С соответствепио 3,605 и 3,612 Мдж/моль (861,1 п 862,6 ккал/моль)-, уд. теплоемкость в кдж/(кг-К) в интервале темп-р 100—200 °С изменяется согласно ур-нию е=1,17-[-0,0071г, где t — темп-ра в ° С [1 к0ж/(кг К)я 0,24 ккал/(кг °С)] дав.денпе паров (мм рт. ст.) в пределах 80—140 °С изменяется согласно ур-нию log Р = 6,78—2344/7 , где Т — темп-ра в К напряженность цикла 15,Э кдж/молъ (3,8 ккал/моль). К. хорошо растворим в воде (525 г в 100 г HjO), спирте, эфире, бепзоле и др., плохо — в алифатич. углеводородах. [c.468]

    Пяти- и более членные лактамы имеют важное промышленное значение, как исходные соединения для получения полимеров. Например, при полимеризации капролактама при нагревании в различных условиях образуется найлон-6 (31). Поэтому получение [140], химия [140] и полимеризация [141] этих лактамов явились предметом интенсивного исследования, причем большая часть результатов представлена только в патентной литературе. Все эти соединения — циклические амиды, и имеют соответствующие химические свойства, однако соединения со средним размером цикла несколько более нуклеофильны, чем типичные ациклические вторичные амиды. Например, капролактам можно с хорошим выходом метилировать по кислороду с образованием простого лактим-иого эфира (32) или по азоту, в зависимости от условий реакции. [c.256]

    Объем, конечная глубина превращения мономера и произзодительность реактора рассчитываются по кинетич. данным (на основании установленных зависимостей скорости реакции от концентрации реагентов и темп-ры). Оптимальная глубина превращения мономера зависит от кинетич. констант процесса, теплоты полимеризации, теплофизич. и гидродинамич. свойств среды, а также от экономич. факторов. При ионной полимеризации и сополимеризации гетероциклов методом П. в м. (капролактам, триоксан с окисью этилена илп с диоксо-ланом) низкие теплоты полимеризации и высокие скорости процесса позволяют вести реакцию почти до 100%-ной конверсии. В то же время при полимеризации этилена тепловой эффект и скорость реакции столь велики, а возможности теплоотвода при высоком давлении столь ограничены, что глубина превращения мономера за один проход этилена через реактор не превышает 12—20%. [c.447]

    Можно получать также продукты совместной поликонденсации. Для этого особенно пригоден капролактам, даже после расщепления его на г-аминокапроновую кислоту. Ценным совместным полиамидом (сополиконденсатом) является, например, гексаметилен-диаминоадипат (игамид 6А), состоящий из 40% капролактама и 60% АГ-соли. Он отличается большим интервалом текучести, большей термопластичностью и лучшей растворимостью, чем поликонденсаты каждого из указанных компонентов. Совместной поликонденсации подвергаются также кетопимелиновая кислота и л,/г -диаминодициклогексилметан. Совместная конденсация позволяет очень широко варьировать состав и свойства получаемых продуктов. [c.482]

    Неоднородность состава алкилрезорциновой фракции, а также особенности строения индивидуальных алкилрезорцинов, различия в их реакционной способности приводят к тому, что для получения стабильных по составу Я физико-химическим свойствам продуктов необходимо проводить либо их конденсацию в присутствии соединений (капролактам, ацетон, этиленгликоль и др.), образующих с фенолами молекулярные комплексы при помощи водородных и донорно-акцепторных связей, либо конденсацию с предварительно полученными оксиметильными производным [72]. В присутствии комплексообразователя ОН-группа резорцинов оказывается блокированной, в результате чего разница между скоростями реакций резорцина и 5-метилрезорцина с формальдегидом снижается в 2 раза (если комплексообразователем является капролактам). [c.57]

    Волокно из поли-е-канроамида [-HN( H2)5 O-]-к а пр о н (СССР), найлон 6, капролан (США), перлон (ФРГ), силон (Чехословакия), амилан (Япония), акулон (Голландия), грилон (Швейцария). В качестве исходного мономера яри получении поли-8-капроамида применяют лактам е-аминокапроновой к-ты — капролактам. Обычный капрон (т. е. волокно, не подвергнутое специальным обработкам) имеет меньший, чем у анида, модуль эластичности, более низкую темп-ру размягчения и плавления. Кроме этого, капрон несколько уступает аниду, по усталостной и ударной прочности. Применение различных модификаторов (напр., К,1 -ди-Р-нафти.1-1>г-фенилендиамина) позволяет значительно повысить эксплуатационные свойства капрона. Волокно формуют при 270—275° экструзией расплавленного полимера через отверстия фильеры. На участке от фильеры до шпули волокно охлаждается и на него наносят замасливающий состав. После вытяжки и крутки на текстильных машинах волокно направляют на промывку для удаления низкомолекулярной фракции, образовавшейся при плавлении полиамида на прядильной машине. Промытое волокно сушат, перематывают и сортируют. Сы. также Поли-е-капро-амид. [c.63]

    Значительно сложнее конструкции бункеров, в которых приходится накапливать, хранить, а также выгружать из них продукты, имеющие свойство слеживания и сводообразования — мелкорезаную и рыхленую целлюлозу, щелочную целлюлозу, диметилтерефталат, капролактам, древесный уголь, глинозем и т. п. В этих случаях в бункерах необходимо устанавливать специальные механизмы для сводоразрушения и обеспечения разгрузки. [c.349]

    Производство так называемых жильных струн из кишек баранов трудоемко и не позволяет получить стандартной продукции. Помимо этого, жильные струны не влагостойки, набирают до[ 30% и болёе влаги й не держат в силу этого строя. Материал для струн должен обладать определенной величиной массы, однородностью, эластичностью, упругостью, прочностью на разрыв, относительно небольшим удлинением при разрыве, водостойкостью. Для увеличения массы струны ее обвивают металлом (канителью). Синтетические смолы, которые могут быть вытянуты в равномерные по толщине однородные нити и обладают указанными свойствами, являются поэтому прекрасным материалом для производства струн. К таким смолам относятся полиамидные, полиуретановые, капролактам и некоторые поливиниловые смолы и эфиры целлюлозы. -Чаще всего синтетические струны в настоящее время производятся из полиамидных смол плавлением их и вытягиванием в размягченном от нагрева состоянии. [c.193]

    В дополнение к предыдущим работам по синтезу структурно гомогенных оптически активных высокомолекулярных полиамидов из D(—)-р-метил-е-капролакта-ма [1, 2] были получены и полимеризованы активные и рацемические формы р-, у- и е-метил-е-капролактамов. Оптически активное а-метильное производное также было получено, но в условиях полимеризации оно раце-мизовалось. Цель проведенного исследования — определение влияния оптически активного центра на структуру и свойства полученных полиамидов и изучение изменений, которые возникают в связи с изменением положения оптически активного центра в основной цепи полимера. [c.228]


Смотреть страницы где упоминается термин Капролактам свойства: [c.83]    [c.536]    [c.13]    [c.14]    [c.111]    [c.449]    [c.330]   
Основы химиии и технологии химических волокон Часть 2 (1965) -- [ c.28 ]

Основы химии и технологии производства химических волокон Том 2 (1964) -- [ c.28 ]

Основы химии и технологии химических волокон (1974) -- [ c.26 , c.27 ]




ПОИСК





Смотрите так же термины и статьи:

Капролактам



© 2025 chem21.info Реклама на сайте