Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Описание сил трения

    Интересно сравнить уравнение (4.100), вывод которого был основан на использовании модели Фойгта, с уравнением (4.15), полученным в работе [1]. Оба уравнения выведены для случая качения сферы по вязкоупругому материалу, однако уравнение (4.100) наиболее пригодно для описания трения качения при высоких скоростях. Действительно, при таких скоростях вязкоупругий материал не успевает восстанавливаться после прохождения сферы, и длина контакта уменьшается до половины по сравнению с длиной в статических условиях. Отсюда следует, что энергия Фа, затраченная на деформирование этого материала, никогда не восстанавливается, поэтому а = = 1 [см. уравнение (4.15)]. Из сопоставления этих двух уравнений следует, что так как Ф в уравнении (4.100) идентично отношению-а/Я в уравнении (4.15), то /гист> определенный по уравнению (4.100), [c.82]


    На адгезию частиц к металлическим поверхностям в жидких средах сильно влияют ПАВ, особенно моющие. С увеличением их концентрации сила адгезии значительно снижается. Адгезионные процессы и соответствующие закономерности необходимо учитывать при изучении нагаро- и лакообразования в двигателях. и подборе моюще-диспергирующих присадок, при анализе работы узлов трения в условиях граничной смазки и использовании твердых смазок, при оценке работы двигателе и механизмов в условиях попадания в них пыли и других загрязнений. Теоретические основы адгезии как поверхностного явления достаточно подробно изложены в монографиях [214, 215]. Описанные в них важнейшие положения теории адгезии можно считать соответствующими положениями и теоретических основ химмотологии. [c.195]

    При совместном количественном описании адсорбционных и коррозионных (химических) процессов, одновременно протекающих в поверхностных слоях при работе узла трения, оказывается возможным прогнозировать износ по уравнению, полученному на основании формальной химической кинетики [261] [c.247]

    Для описания реологических свойств жидкости предложено много приближенных моделей. Наибольшее распространение нашли модели, представляющие степенные зависимости вязкости от напряжения трения или скорости сдвига. Обобщенный закон Ньютона для таких моделей можно записать в виде  [c.32]

    Идеальный дисперсный поток может быть описан двухскоростной моделью взаимопроникающего движения двух несжимаемых фаз в поле сил тяжести, с одинаковым давлением в фазах, одинаковыми частицами, форма которых близка к сферической, при отсутствии вязкого трения на стенках колонны, дробления и коагуляции частиц. [c.87]

    Рассмотренные методы описания износа относятся к узлам трения. Для машины в целом описать ее износ трудно, поэтому используются показатели надежности, рассматриваемые далее. [c.38]

    Математическое описание типовых процессов химической технологии обычно выражается определенными классами уравнений. Это часто позволяет формализовать процесс его составления и существенно облегчает задачу разработки алгоритмов. Более того, принцип изоморфности математического описания позволяет в результате решения одной конкретной задачи получить информацию о свойствах целого класса объектов с аналогичными математическими описаниями. Подобным примером являются дифференциальные уравнения, описывающие различные по природе явления формально аналогичными соотношениями [2] перенос количества энергии (закон трения) [c.256]

    К сожалению, автор не развил в своей модели механизм внутреннего трения в псевдожидкости и не смог найти конструктивного подхода в описании движения газовых пузырей в движущейся псевдожидкости. Для дальнейшего решения автор использовал эмпирическую зависимость коэффициента скольжения фаз от высоты транспортирования, причем зависимость была получена им только для апатитового концентрата. [c.35]


    Первая задача сводилась к описанию механизма внутреннего трения в псевдожидкости, вторая — к описанию механизма газо-псевдожидкостного эрлифта. [c.35]

    При г/ >3 возрастающая роль поверхностного трения приводит к уменьшению доли потерь, обусловленной течением вдали от колена. В змеевиковых трубах формируется полностью развитое течение, что позволяет использовать для его описания коэффициент трения. [c.131]

    Для того чтобы свободно ориентироваться в дальнейших обсуждениях, ниже приведено краткое описание типичных значений физических свойств полимеров, относящихся к задачам теплообмена. Затем перечислены важные безразмерные критерии, которые описывают качественно природу задач теплопереноса. Затем представлены характерные решения задач теплообмена соответственно с учетом и без учета нагрева вследствие внутреннего трения. Рассматриваемые задачи в большинстве своем ограничиваются течениями в каналах. В конце данного параграфа приведено описание влияния добавок небольших количеств полимеров на теплообмен в трубах или при турбулентном режиме течения. [c.328]

    При умеренной скорости горения пламя, распространяющееся в горизонтальной трубе со стороны открытого конца, приобретает специфическую наклонную, вытянутую вперед форму. На определенном протяжении пути пламени такое горение остается стационарным. В дальнейшем, так же как и при горении в вертикальной трубе, усиливающееся трение о стенки при истечении продуктов реакции из трубы приводит в движение и сгорающую среду, поверхность пламени прогрессивно увеличивается и горение ускоряется. Описанная форма пламени является следствием воздействия на горение обоих искажающих факторов — сил тяжести и трения. Форма пламени определяется соотношением между нормальной скоростью пламени и скоростью движения газа вблизи каждого участка фронта. [c.13]

    Действительная картина движения дробящих тел в барабане отличается от описанной. В барабанной мельнице находится не одно, а большое число дробящих тел, перемешанных с измельчаемым материалом. Дробящее тело не может свободно сползать вниз, так как за ним следуют другие тела и они его как бы подталкивают. Кроме того, внутренняя поверхность барабана защищена броневыми плитами фигурного профиля с выступами, и тела находятся как бы в зацеплении с футеровкой, что почти исключает свободное скольжение или скатывание по внутренней поверхности барабана. Уже при медленном вращении барабана часть дробящих тел за счет увеличенного коэффициента трения и давления ниже лежащих тел оказывается поднятой выше точки-ag, а это позволяет перейти к рассмотрению условий равновесия тела на участке дуги А 2—Ag. [c.176]

    При больших числах Рейнольдса поток, набегающий на горизонтальный цилиндр, может быть описан с помощью уравнений для течения двухмерной несжимаемой среды без трения. Численные уравнения для такой системы, а также их модификации, учитывающие пограничные слои, детально описаны в работах [529, 643], и здесь они будут только вкратце обобщены. [c.300]

    Действительная картина волновых явлений значительно сложнее описанной. В этом большую роль играют успокаивающее влияние трения в сопротивлениях, изменение проходного сечения трубопровода, влияние переменного объема цилиндра, наличие промежуточных емкостей, снижение температуры газа в холодильнике, длительность открывания клапана и др. [c.261]

    Кроме детекторов, ТПУ может иметь датчики, сигнализирующие о положении поршня и о стадиях работы ТПУ пуск поршня, проход через детекторы, приход в камеру и т.д. Наличие таких датчиков облегчает управление ТПУ. Все ТПУ должны иметь приборы (датчики) для измерения температуры стенок, жидкости и давления на входе и выходе из установки. Для обеспечения полной автоматизации процесса поверки ТПУ снабжаются датчиками температуры и давления. В описанных ТПУ применяются поршни, вьшолненные в виде полого шара. Внутренняя полость шара заполняется жидкостью, для чего он снабжается клапаном, заделанным в стенку. К материалу и конструкции поршня предъявляются жесткие требования стойкость к измеряемой среде, высокая механическая прочность и прочность на истирание, высокая эластичность, стойкость к воздействию температуры (от -50 до +50 °С), низкий коэффициент трения, конструкция поршня должна позволять изменять его диаметр путем закачивания жидкости под избыточным давлением. [c.89]

    Объем, воспроизводимый ТПУ в процессе поверки, представляет собой объем, описанный движущимся поршнем с момента выдачи сигнала первым детектором (замыкания его контактов) до момента выдачи сигнала вторым детектором. Случайная погрещность ТПУ в основном выражается через нестабильность срабатывания детекторов под воздействием случайных причин (условий трения между деталями детекторов, между поршнем и стенками калиброванного участка, пульсаций расхода и т.д.). При поверке управление счетчиком импульсов, отсчитывающим количество импульсов от ТПР, производится теми же сигналами детекторов, то есть объем, воспроизводимый ТПУ - Ко, и количество импульсов N ограничены одними и теми же сигналами. Поэтому любые случайные изменения объема, воспроизводимого ТПУ, вызывают соответствующие пропорциональные изменения количества импульсов. Другими словами, случайная погрешность ТПУ органически входит в случайную погрешность величин N или К (коэффициент преобразования ТПР), измеряемых или определяемых при поверке (рис.3.4). На рисунке для простоты показаны различные моменты срабатывания только первого детектора. Кроме того, отклонения количества импульсов от среднего значения АМ = N - Ы, содержат в себе также отклонения, вызванные изменением К в процессе поверки. Величины Уо и /V, связаны выражением N. = К К,. [c.122]

    Книга посвящена описанию присадок к маслам, улучшающим условия трения. Приводится информация об ассортименте отечественных и зарубежных присадок. Описан принцип подбора присадок, механизм их действия и свойства. Даются рекомендации по использованию присадок к маслам в зависимости от типа оборудования и условий его применения. [c.309]


    В настоящее время еще не существует исчерпывающей теории сухого трения. Так, до сих пор отсутствуют удовлетворительные методы описания структуры контактирующих твердых поверхностей как на микро-, так и на макроуровне. Более того, скольжение одного твердого тела относительно другого может быть причиной появления высоких локальных температур и давлений, действие которых приводит к образованию новых поверхностей с неизвестными химическими свойствами и к существенному изменению микротопографии контактирующих поверхностей. По этой причине коэффициенты статического и кинематического трения отличаются друг от друга. Обычно коэффициент трения покоя превышает кинематический коэффициент трения. Эта разница, по-видимому, объясняет явление стик— слип (прилипание с проскальзыванием), которое обычно наблюдается при сухом трении. По мнению Нильсена [91, фактическая площадь контакта на стадии стик (прилипание) возрастает под действием увеличивающихся тангенциальных сил. В тот момент, когда величина этих сил оказывается достаточной для сдвига и пропахивания поверхности контртела, начинается фаза слип (проскальзывание). На стадии проскальзывания площадь фактического контакта и сила трения быстро уменьшаются. [c.85]

    Следовательно, идеально обратимым является такой гипотетический процесс, в котором трение, лучеиспускание, электросопротивление и все другие аналогичные источники рассеяния энергии отсутствуют. Он может рассматриваться как предел реально воспроизводимого процесса, подойти к которому на практике мы можем как угодно близко. Представим себе процесс, происходящий таким образом, что на каждой стадии бесконечно малое изменение внешних условий будет вызывать обращение хода процесса или, иначе говоря, на каждой ступени процесс сбалансирован. Очевидно, система может быть обращена в свое первоначальное состояние бесконечно малыми изменениями внешних условий. В этом смысле говорят, что обратимый процесс осуществим на идеальном опыте . С таким идеальным опытом мы уже имели дело при описании цикла Карно, который весь состоит из процессов, осуществимых только в нашем воображении. [c.94]

    Обратимся, наконец, к модели Бингама, которая среди рассматриваемых нами комбинаций двух простейших реологических элементов представляет особый интерес в связи с описанием коллоидных структур, например водных дисперсий глинистых минералов. Это — параллельное соединение вязкого ньютоновского элемента и кулоновского элемента сухого трения (рис. XI—13). Поскольку элементы параллельны, их деформации одинаковы, а напряжения на элементах складываются. При этом на кулоновском элементе напряжение не может превышать предельного напряжения сдвига т. Следовательно, [c.314]

    Теоретической основой методов оценки противоизносных свойств реактивных топлив на описанных установках является тот известный факт, что для любой трущейся пары существуют такие условия (контактные напряжения, скорости относительного перемещения, температура, смазочная среда и т. п.), при которых на поверхностях трения развивается и устойчиво существует химический вид износа, характеризующийся малыми скоростями износа, гладкими полированными поверхностями трения и малыми коэффициенталн трения. При изменении этих условий химический вид износа переходит в износ схватыванием с весьма большой скоростью износа и полным повреждением поверхностей вплоть до заклинивания. [c.38]

    При исследовании противоизносных свойств авиационных топлив, необходимо наряду с изучением описанных выше зависимостей изучить механизм взаимодействия топлива с металлами контактируе-мых поверхностей. Многочисленные наблюдения за поверхностями трения, изучение состава продуктов износа, процессов, происходящих в тонких поверхностных слоях металлов, позволяют составить следующую общую схему взаимодействия топлив с металлами в процессе трения. Как только металлический образец погружается в топливо, на его поверхности адсорбируются поверхностно-активные молекулы гетероатомных соединений (кислородных, сернистых, азотистых), а также молекулярный кислород и образуется тонкий граничный слой. Этот слой может воспринимать сравнительно большие, нормальные к поверхностям трения нагрузки и легко деформируется при приложении тангенциальных напряжений. При контактировании двух металлических поверхностей между ними будет находиться граничный слой из адсорбированных молекул. Если контактная нагрузка, скорость относительного перемещения и объемная температура топлива невелики, то тонкая граничная пленка выполняет роль эффективной смазки, а поверхностные слои окислов металла подвергаются в основном упругой деформации, причеМ деформацией охвачены очень тонкие слои окислов. При многократном упругом передеформировании окисных слоев происходит их усталостное разрушение, а на месте разрушенных окислов образуются новые вследствие окисления металла кислородом, всегда присутствующим в топливе или выделяющимся при разложении гетероатомных кислородных соединений. [c.70]

    Как видно из формулы, уд. вес керосина не играет знаяительной роли, тогда как вязкость существенным образом влияет на конечны результат. Поэтому поднятие осветительных масел вообще и керосина, в частности, в ысокой степени зависит от вязкос ги продукта. Вязкость керосина, вообще говоря, очень незначительна и понижение температуры изменяет ее относительно мало определение этой константы в вискозиметре Энглера дает величины, лишь немногим превышающие единицу, но не потому, что вязкость керосина близка к таковой для воды, а потому, что Энглеровский прибор может давать действительные показания только в случае более вязких жидкостей. У него слишком мало трение в сточной трубочке и поэтому скорости протекания жидкостей маловязких измеряются приблизительно равными промежутками времени. Но достаточно замедлить эту скорость, и между водой и керосином станет заметна значительная разница в скоростях истечения для воды при 20° коэфициент внутреннего трения около 0,0101, для бакинского керосина = 0,821 (при 20° Ц) около 0,0187. Для такого рода исследований служат или капиллярные трубки, или видоизмененный прибор Энглера, предложенный Уббелоде, с более узким и длинным сливным отверстием. В виду единства изложения описание этого прибора помещено в отделе вязкости смазочных масел. [c.193]

    Повышении проницаемость слоя вблизи стенки аппарата обусловлена не только гладкостью ее новерхностн, но и силами трения между стенкой и частицами лоя, препятствующими уплотнению слоя ири его засыпке и усадке под действием разности давлений нри фильтрации [81 I. Переменная по ссчению пористость (порозпость) обусловливает нере. ленное сопротивление, а следовательно, приводит к перетеканию части жидкости из центральной области к периферии. При этом скорости в центральной области уменьшаются, а в пристенной еще больше возрастают, и на выходе из слоя устанавливается профиль скорости сильно вогнутой формы с резко повышенной скоростью у стенки. Описанная перестройка профиля скорости вдоль слоя дана схематически на рис. 3.12, б. [c.90]

    При рассмотрении свободных колебаний мы допустили, что последние происходят при отсутствии каких бы то ни было причин, препятствующих движению, т. е. поглощающих энергию колеблющихся систем. Между тем очевидно, что такие причины всегда имеют место. Таковы, напримс ), сопротивление среды, трение в опорах, трение внутри самого материала (вязкость), вследствие которых часть энергии деформации превращается в тепло. Так как свободное колебание происходит без притока энергии извне, а причины, вызывающие потери энергии, действуют постоянно, то, очевидно, амплитуды колебаний с течением времени должны уменьшаться до тех пор, пока, наконец, по истечении более или менее продолжительного отрезка времени, колебание пе прекратится. Колебания описанного типа называются затухающими. Силы, являющиеся причииоГ потери энергии, ее рассеяния, называются диссипативными (рассеивающими) силами. [c.536]

    Как показано в работе, вертикальное перемешивание незначительно в тех случаях, когда и 2и (где и- "скорость трения", описанная в статье [Моп]1,1972]). Таким образом, переход от гравитационного опускания к турбулентному перемешиванию появляется тогда, когда и 2и и р(г) р . Исходя из экспериментов определено, что через 80 с от момента начала выброса скорость трения равнялась 0,25 м/с. Анализируя результаты экспериментов, ван Илден сделал следующие выводы  [c.119]

    Вопрос, связанный с устранением источников воспламенения, достаточно обширен, чтобы детально его рассмотреть, однако можно сконцентрировать внимание на некоторых отдельных моментах. Электрическое оборудование должно быть пыленепроницаемым, и особое внимание необходимо уделить устранению опасностей, связанных с вьвделяемой данным оборудованием тепловой энергией. Двигатели, воздушные отверстия охлаждения которых забиваются пьшью, могут перегреться. Колбы электрических ламп покрываются пылью, в результате чего они также могут перегреться. Так, например, один из случаев взрыва произошел из-за запыления ручного электрического фонаря. Многие взрывы, описанные в обзоре [Verkade,1978], были вызваны трением ремней шкивов и конвейеров. В процессе дробления и размалывания трение металлических частей может привести к искрению и перегреву. [c.268]

    В соответствии с описанным тюдходом члены, учитывающие трение, представим в следующем виде  [c.31]

    Е. Нестационарное течение в канале. В том случае, когда движущий перепад давления зависит от времени, в канале реализуется нестационарное течение. Частным случаем является осциллирующее течение в трубе, вызванное периодическими изменениями перепада давления. Переходный характер течения может быть обусловлен динамическими процессами, такими, как, например, закрывание клапана или изменение мощности насоса. Расчет неустановившихся теченин го[)аздо сложнее, чем стационарных, так как при.ходится прослеживать всю предысторию течения, начиная от момента возникновения неста-ционарности вплоть до интересующего. Кроме того, оказывается, вообще говоря, непригодной концепция коэффициента треиия, использовавшаяся для описания стационарных течений, так как изменения градиента давления и вызванные ими изменения поверх и ости ого трения становятся разделенными во В )емени. Становится также нетривиальной процедура временного усреднения при описании турбулентных течений, так как осредненные величины (например, скорости) остаются функциями времени. В этом случае приходится проводить усреднение по ансамблю (см. 2.2.1). [c.130]

    Модель потока дрейфа для течений с преобладающим влиянием сил тяжести без учета напряжения трения на стенке. Обычно считается, что цель этого метода — расчет средней объемной концентрации дискретной фазы при двухфазном течении в канале, когда известны объемные расходы Уа и соответственно дискретной и непрерывной фаз. Метод обычно применяли к вертикальным потокам, в которых его главные допущения (постоянство скоростей и концентраций фаз поперек канала) ближе всего к действительности. Влияния касательных напряжений у стенки не учитываются, н, следовательно, метод непригоден для расчета потерь давления, вызываемых трением. Самое подробное описание этого метода дано в книге [7]. Следуя ей, допустим, что скорости и плотности потоков положительны в направлении движения элемента дискретной фазы, находящегося под действием силы тяжести в статическом объеме непрерывной фазы. В этом случае скорости, направленные, например, вверх, рассматриваются как положительные для пузырькового режима течения газожидкостного потока, а скорости, направленные вниз, считаются положительными для суспензии тяжелых твердых частиц в более легкой жидкости. Это правило позволяет представлять все соответственные системы (пузырьковые газожидкостные потоки, капельные жидко-жидкостиые потоки, суспензии твердых частиц в газе, суспензии твердых частиц в жидкости, дисперсные газожидкостные потоки) обычным образом. [c.180]

    Наблюдения двухфазных течений, а следовательно, и их классификация довольно субъективны. Методы наблюдения и описания режимов течения обсуждаются, например, в [1 . Используемые методы включают высокоскоростную фотографию, исследования с помощью рентгеновского излучения и статистический анализ изменения величин, таких, как локальное давление в системе, напряжение трения на стеаке, поглощение рентгеновского излучения. Любую информацию о режимах течения следовало бы рассматривать строго в рамках метода, которым она была получена. Обычно, лучше всего стараться использовать комбинацию методов, но даже и в этом случае имеется сильный элемент субъективности. [c.183]

    Так как градиент давления, характеризующий потери на трение, должен быть описан эмпирически, соотношение зависит от результатов экспериментов, ксторые дают, по определению, полный градиент давления. Чтобы оценить градиент давления, обусловленный трением, из полного градиента давления необходимо вычесть члены, определяющие падение давления из-за наличия ускорения и силы тяжести. Так как эти члены соответственно различны для гомогенной и раздельной моделей течения, данные по градиентам давления из-за трения, используемые в качестве основы для получения зависимостей, различны. Таким образом, имеется скрытая взаимосвязь между зависимостями для истинного объемного газосодержания и градиента давления, обусловленного трением, использующими модель раздельного течения. Это часто вызывает путаницу при сравнении данных по градиентам давления, характеризующих потери на трение, полученных разными авторами. [c.189]

    Метод этот значительно проще, чем непосредственное изменение внутреннего трения консистентных смазок при больших градиентах скорости в капиллярах. Для его применения, однако, необходимо иметь машину трения Деттмара или другую аналогичную машину. Ввиду этого здесь не приводятся подробности метода, детально описанного Великовский [330]. [c.712]

    Задача непосредственной передачи энергии решена в дизель-компрессоре со свободными поршнями, который действует следующим образом. Энергия газа, расширяющегося в цилиндре дизеля, сообщает движение двум поршневым группам, синхронно движущимся в противоположные стороны, и перемещает их к внешним мертвым точкам (рис. 1У.27). В начале этого хода противодавление газа в цилиндрах компрессора еще невелико, поэтому лишь небольшая доля сил, действующих на поршни дизеля, затрачивается на преодоление давления и сил механического трения. Избыток движущих сил со стороны дизеля над силами сопротивления со стороны компрессора расходуется на увеличение скорости движения поршней, в результате чего избыточная энергия трансформируется в кинетическую энергию поршневых масс. По мере сжатия газа в цилиндрах компрессора противодействие со стороны компрессора возрастает. При некотором положении поршней силы противодействия компрессора становятся равными, а затем превышают уменьшающиеся по ходу поршней движущие силы дизеля. Поршни получают обратное ускорение и передают компрессору запасенную ими энергию, которая расходуется на дальнейшее сжатие газа. Возврат поршней к внутренним мертвым точкам происходит за счет энергии сжатого газа, оставшегося в намеренно увеличенных мертвых пространствах цилиндров компрессора. Таким обра.зом, в машинах, действующих по описанному принципу, свободные поршни выполняют аналогично маховику роль аккумулятора энергии. [c.145]

    Для расчета потерь датаения при движении двухфазного потока неточных зависимостей. В то же время имеется достаточное число эмпирических зависимостей, позволяющих приближенно оценить такие потери. Суммарный перепад давления по длине трубы, равной ее диаметру, вследствие трения газа и суспендированного материала с учетом коэффициентов трения чистого газа и твердых частиц может быть описан следующим уравнением  [c.189]

    По назначению (областям применения) выделяют следующие группы масел (рис. 2) смазочные, консервационные, электроизоляционные, гидравлические, технологические,. вакуумные, медицинские и парфкзмерные (белые). Наиболее представительны как по ассортименту, так и по объему производства, смазочные масла. Классификация масел по назначению в значительной степени соответствует их функциональному действию. Она наиболее обширна многие из приведенных групп масел делятся еще на несколько подгрупп ло более узким областям применения. Среди смазочных масел, основным назначением которых является уменьшение трения и износа металлических поверхностей, наиболее значительной группой являются моторные масла, которые, в свою очередь, делятся на масла для карбюраторных, дизельных и поршневых авиационных двигателей. Электроизоляционные масла подразделяют на трансформаторные, кабельные и конденсаторные (более подробное описание каждой группы масел по назначению и пх классификации (Приведены в гл. X). [c.25]

    Возникновение в механической системе колебаний нельзя рассматривать без учета взаимодействия ее элементов. Возникшие колебания одной детали в машине обязательно будут передаваться на другие, претерпевая определенную трансформацию. В основу описания колебательного процесса в механической системе (на примере станка) бьша положена аналогия между процессами, протекаюндами в системах автоматического регулирования и станке [ 12]. Упругую систему, процесс резания и процесс трения рассматривают как элементы замкнутой системы регулирования. Такое представление позволило сделать большой шаг вперед в изучении и описании колебаний механической системы. [c.56]

    Исследование изнашивания деталей является самостоятельной отраслью знания и в рамках данной книги не представляется возможным полное описание механизма образования износа. В связи с этим коротко остановимся на разновидностях изнашивания и механизмов его образования. К основным видам изнашивания относятся механическое изнашивание, возникающее н результате механических воздействий молекулярномеханическое изнашивание, происходящее в результате одновременного механического воздействия и молекулярных (атомных) сил коррозион-но-механическое изнашивание, обусловленное трением материала, вступившего в химическое взаимодействие со средой. [c.57]

    Теоретическое описание жидкостного трения обычно проводится с позиций так называемого смазочрюго приближения (подробно рассмотренного в разд. 5.4), которое используется для анализа процессов генерирования давления и транспортировки расплавов полимеров. [c.91]

    Транспортировка материала в червячных экструдерах осуществляется за счет сил трения (см. разд. 8.13). Для описания транспортировки твердых частиц в мелких каналах можно использовать уравнение (8.13-7). Однако канал на участке зоны питания червячных экструдеров обычно имеет большую глубину, и его кривизной нельзя пренебрегать. Используя методы, разработанные Дарнеллом и Молом [15], и произведя те же самые упрощения, что и в разд. 8.13, получим описание процесса транспортировки твердого материала в глубоких каналах червяка. [c.434]

    В пластицирующем экструдере можно выделить два самостоятель ные участка транспортировки. Первый участок расположен непо средственно за областью плавления здесь можно применять модели описанные в предыдущем разделе, без какой-либо модификации Кроме того, транспортировка расплава происходит в слое расплава который граничит с твердой пробкой. На этом участке ширина слоя по мере продвижения по каналу увеличивается. Более того, непрерывно увеличивается также и массовый расход находящегося перед толкающей стенкой расплава в результате притока расплава из пленки. Обе эти величины, а также средняя температура пленки расплава могут быть рассчитаны на основании модели плавления. Следовательно, модель движения расплава в зоне дозирования можно использовать для приблизительного расчета локального градиента давления и изменения температуры в пределах малых шагов расчета, используя средние значения локального расхода и локальную ширину слоя расплава [2, 27]. На рис. 12.20 представлены результаты таких расчетов. При этом предполагают, что процесс плавления оказывает сильное влияние на процесс нагнетания расплава, а возможное влияние последнего на плавление пренебрежимо мало. В действительности расплав, находящийся перед пробкой, сжимает ее и создает на ее поверхности тангенциальные напряжения, которые наряду с вязким трением в пленке расплава и силами трения, действующими у сердечника червяка и винтового канала, определяют распределение напряжений в твердой пробке передней стенки. Попытки такого анализа взаимодействия двух фаз, которые в принципе могут позволить прогнозировать деформационное поведение пробки, ее ускорение и разрушения, можно найти в работах [13, 28]. [c.452]

    Это соотношение было установлено Л. А. Вулис.ом ) и получило название условия обращения воздействия. Особенность этого соотношения состоит в том, что знак его левой части изменяется при переходе значения скорости через критическое. Поэтому характер влияния отдельных физических воздействий на газовое течение противоположен при дозвуковом и сверхзвуковом режимах. Воздействия, вызывающие ускорение в дозвуковом потоке (сужение канала, подвод дополнительной массы газа, совершение газом работы, трение и подвод тепла йР <0, йС> О, Ь > О, dQвliv > 0), приводят к замедлению сверхзвукового потока воздействия обратного знака (расширение канала, отсос газа, сообщение газу механической энергии и отвод тепла йР > О, йС < О, Ь < О, й нар < 0) приводят к замедлению дозвукового и ускорению сверхзвукового потоков. Отсюда следует важный вывод, что под влиянием одностороннего воздействия величину скорости газового потока можно довести только до критической, но нельзя перевести через нее. Например, путем подвода тепла можно ускорять дозвуковой поток, но только до тех пор, пока не получится М = 1. Для того, чтобы перевести дозвуковой поток в сверхзвуковой, нужно переменить знак воздействия, т. е. в зоне М = 1 начать отводить тепло. Таково обоснование описанного в предыдущем параграфе явления теплового кризиса в камере сгорания. Подогрев газа в сверхзвуковом течении вызывает торможение потока, но переход к дозвуковому течению и дальнейшее торможение станут возможными только в том случае, если, начиная с М = 1, мы переключимся на охлаждение газа. [c.203]

    Видно, что наиболее сильное воздействие на величину турбулентного трения в плоском пограничном слое оказывает окружное магнитное поле, что объясняется его влиянием на две составляющие пульсационной скорости, входящие в выражение для напряжения трения. Описанный метод учета влияния магнитного поля на турбулентность можно применять и в том случае, если направление магнитного поля не совпадает с направлением одной из составляющих пульсационной скорости при этом вектор магнитной индукции следует разложить на компоненты, параллельные составляющим скорости, и затем вести расчет по приведенным выше формулам, учитывая воздействие на турбулентность каждого компонента вектора магнитной индукции. [c.253]

    Описанные модели реостабильных (неньютоновских) жидкостей являются идеальными. Реальные жидкости при различных скоростях сдвига и в различных процессах могут подчиняться разным реологическим уравнениям состояния. Например, масляная краска, считающаяся классическим образцом жидкости Шведова - Бингама, при очень маленьких скоростях сдвига ведет себя как ньютоновская жидкость с большой вязкостью. Следовательно, закон трения нужно выбирать, учитывая скорость [c.24]


Смотреть страницы где упоминается термин Описание сил трения: [c.62]    [c.308]    [c.153]    [c.179]    [c.235]    [c.126]   
Теория и проектирование гидро- и пневмоприводов (1991) -- [ c.195 ]




ПОИСК







© 2024 chem21.info Реклама на сайте