Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Марганец в железе металлическом

    Приведем пример дробного обнаружения катионов кальция. Лучше всего его обнаружить в виде оксалата. В этом случае алюминий, хром, марганец, железо и другие катионы маскируются в виде комплексных оксалатов, легко растворимых в воде. Некоторые катионы тяжелых металлов — серебро, сурьма, ртуть, свинец, висмут не дают растворимых оксалатных комплексов, но осаждаются металлическим цинком. В раствор переходит ион цинка, не мешающий реакции на кальций и образующий комплексный оксалат. Стронции и барий не мешают реакции, так как осаждаются в виде сульфатов растворимость сульфата кальция 2,5 г/л, что позволяет уверенно обнаружить кальций в фильтрате в виде оксалата кальция после осаждения мешающих катионов. [c.133]


    Интересно отметить, что хром в металлическом состоянии имеет металлическую валентность 6, соответствующую степени окисления + 6, характерной для хроматов и бихроматов, а не более низкой степени окисления -ЬЗ, характерной для солей хрома металлы марганец,, железо, кобальт и никель тоже имеют металлическую валентность 6, хотя почти все эти элементы образуют соединения со степенями окисления + 2 и -ЬЗ. Ценные физические свойства переходных металлов обусловлены высокой металлической валентностью этих элементов. [c.494]

    Оксихинолин отличается от других оксихинолинов пространственным расположением гидроксильной группы по отношению к азоту кольца. В результате такого расположения ионы многих металлов образуют с 8-оксихинолинами нерастворимые клешнеобразные соединения. Такие металлы, как медь, цинк, кадмий, алюминий, висмут, уран, марганец, железо (трехвалентное) и никель, наряду с некоторыми другими, осаждаются в виде клешнеобразных соединений с 8-оксихинолином из его раствора, содержащего уксуснокислый натрий. Вследствие этого 8-оксихинолин является одним из наиболее ценных органических реагентов для определения металлических ионов. Это соединение известно также под названием оксина оно было предложено в качестве аналитического реактива Ханом [449] и Бергом [450]. Имеются хорошие обзоры работ с применением этого реагента [4506, 451]. [c.104]

    Металлы занимают в периодической таблице элементов Д. И. Менделеева весь левый нижний треугольник гипотенуза его проходит по элементам А1, Т , Ое, ЫЬ, 8Ь, Ро, но и другие элементы, которые по-иали в правый угол таблицы, элементы, относящиеся к середине больших периодов (их теперь называют -элементами), тоже металлы это — V, Сг, Мп, Ре, Со, N1, Мо, Тс, Ни, КЬ, Р(1, Ке, Оз, 1г, Р1, это и все лантаноиды и актиноиды. Таким образом, мы можем сказать, что подавляющее большинство элементов при обычных условиях в чистом виде обладают металлическими свойствами, а при исключительных условиях — очень низкой температуре и очень высоком давлении — и типичные неметаллы начинают проявлять металлические свойства. Если еще вспомнить, что очень многие элементы, в свободном виде являющиеся типичными металлами, в соединениях проявляют амфотерные свойства, например алюминий, хром, марганец, железо, или элементы (германий, олово и др.), образующие соединения, аналогичные тем, что дают типичные неметаллы, то станет очевидным строгой грани между металлами и неметаллами провести нельзя. [c.196]


    Большинство карбидов d-элементов — преимущественно металлические соединения. Их состав и структура зависят от степени завершенности d-подслоя атомов d-элементов. Так, для элементов подгрупп титана, ванадия и хрома характерны карбиды среднего состава МС (гранецентрированная кубическая решетка) и Mg (гексагональная решетка). Марганец, железо, кобальт и никель, характеризующиеся меньшей ненасыщенностью d-подслоя, [c.422]

    Катализаторами, ускоряющими окисление бензинов и дизельных топлив при хранении, могут быть металлические поверхности резервуаров и трубопроводов, а также оксиды и соли, покрывающие эти поверхности. Ускорение окисления вызывается, кроме того, оксидами и солями металлов, которые могут находиться в топливах в виде тонкодисперсной взвеси. Каталитическую активность в основном проявляют металлы переменной валентности— железо, медь, хром, марганец, кобальт [66]. [c.58]

    О катализирующем влиянии металлических поверхностей на процесс окисления масел известно давно. Наиболее активно ускоряют окислительный процесс медь, свинец и их сплавы, марганец, хром несколько меньше — железо, олово. Относительно слабо катализируют окисление цинк и алюминий. Следует также иметь в виду, что активность перечисленных металлов может меняться в зависимости от конкретных условий, в которых идет окисление. Например, алюминий, известный своей малой активностью как катализатор окисления масел, при удалении с его поверхности оксидной пленки оказывается, наоборот, одним из наиболее активных металлов [100]. При окислении масел в присутствии парных катализаторов (например, железа и меди), процесс ускоряется в большей степени, чем при использовании тех же катализаторов в отдельности. На рис. 2.17 показано влияние одновременного присутствия меди и железа на окисление белого масла [100]. [c.76]

    Некоторые элементы представлялись неудачно помещенными в таблице. Например, хром, Сг, недостаточно сходен с алюминием, А1, металлический элемент марганец, Мп, совсем не похож на неметаллической фосфор, Р, а типичный металл железо, Ре, сопоставлялся с типичным неметаллом серой, 8. [c.307]

    Установлено, что при увеличении содержания углерода прочность и твердость железа увеличиваются, то есть несмотря на то, что в стали содержится большое количество металлических и неметаллических элементов марганец, кремний, фосфор, сера, хром, никель, медь, азот, кислород или водород, решающую роль в превращении железа в сталь играет именно углерод [14]. Например, для стали У7А (содержание углерода 0,63- 0.73 %) предел прочности при растяжении 650 МПа, относительное удлинение 18 %. в отожженном состоянии НВ 180 [13]. [c.18]

    Некоторые легирующие добавки (например, металлический марганец, хром, молибден) способствуют сохранению у охлажденной стали при обычных температурах структуры Y-железа, что приводит к замедленному переходу углерода из растворенного в обособленное состояние. Такие легированные стали обладают особенно высокой прочностью. [c.118]

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]

    Электролиз водных растворов используется для получения таких металлов, как медь, цинк, никель, кобальт, олово, свинец, сурьма, марганец, хром, железо, кадмий, золото, серебро. Электрический метод используют для получения металлических порошков. [c.5]

    Чистый металлический марганец в технике не применяют из-за большой твердости и хрупкости, одиако соединения марганца давно используют во многих отраслях народного хозяйства. Около 90% всего добываемого марганца идет на изготовление легированных сталей. Прежде всего его используют в металлургии для раскисления железа, стали и бронзы. Металлический марганец, добавленный к расплавленному железу, извлекает из расплава остатки кислорода и уносит его в шлак. Марганец также регулирует содержание серы в стали, и, наконец, при большом содержании его в расплаве он входит в состав стали, придавая ей большую твердость, ковкость, вязкость и повышенное сопротивление к изнашиванию [600, 1036]. [c.8]


    Марганец выделяет из кислых растворов солей висмута металлический висмут. Кроме висмута марганец вытесняет мышьяк, сурьму, медь, свинец, олово, железо, никель, кобальт, хром, кадмий, цинк [1069]. [c.284]

    Простые металлические вещества, окисляемые и дающие кислоты сурьма, серебро, мышьяк, висмут, кобальт, медь, олово железо, марганец, ртуть, молибден, никель, золото, платина, сви нец, вольфрам, цинк. [c.66]

    Среди металлических материалов исключительное полол<ение занимают сплавы на основе железа. Сплавы железа с содержанием углерода до 2% принято называть сталью, а свыше 2% — чугуном. Используемые в настоящее время в промышленности стали обычно делят на углеродистые и легированные. Создание новых н интенсификация существующих промышленных процессов заставляет все больше использовать легированные стали, которые обладают повышенной коррозионной стойкостью. Массовая доля средне- и высоколегированных сталей в настоящее время составляет почти 20% от общего количества производимых промышленностью черных металлов. Для легирования используют такие элементы, как никель, хром, молибден, вольфрам, ванадий, кобальт, марганец, медь, титан, алюминий. Сплавы железа с хромом составляют основу нержавеющих сталей, среди которых [c.136]

    Марганец металлический и марганец азотированный. Методы определения железа [c.567]

    Катализаторы используются в виде,тонко размельченных металлических порошков, тонких листов металла, металлов на многочисленных носителях разных видов пористости и кристаллической структуры. К металлам, которые применяются как промоторы, относятся золото, медь, железо и марганец. В качестве промоторов [c.269]

    ФОСФАТЙРОВАНИЕ - создание на поверхности металлических изделий пленки из нерастворимых фосфатов. Осн. назначение Ф., к-рое сочетают, поскольку пленка пориста, с нанесением лакокрасочных или масляных покрытий,— повышение коррозионной стойкости изделий. Фосфатные покрытия термостойки до т-ры 400—500° С и выдерживают напряжение 300—500 в. Ф. осуществляют воздействием на обрабатываемые изделия (преим. стальные или чугунные малолегированные) раствора кислых солей — фосфорнокислого железа и марганца (иногда цинка) — МАН ЕФ (марганец, железо, фосфор) примерного состава 18—20% Мп 0,14-0,15% Ре2+ 2,0-2,5% Ге + 60-70% РО 1% 804 1-2% НзО  [c.660]

    При этой технологии (табл. 2-42) поК рытие изготавливается из суспензии металлического порошка (или смеси порошков) в биндере. Порошки могут состоять только из металлов, нерастворяющихся или мало растворяющихся в соединительных сплавах (разд. 2, 5-3) и образующих прочное соединение с керамикой. Применяемыми при этом металлами являются молибден, вольфрам, марганец, железо, хром, медь, никель, рений. К металлическим по рошкам иногда добавляют небольшое количество окисло1в (например, окисел марганца), чтобы облегчить процесс окисления, необходимый для образования соединения. Можно применить окисел молибдена вместо молибденового порошка либо смесь 10КИСЛОВ молибдена п марганца (в соотношении 20 1). [c.148]

    До сих пор в рассматриваемых соединениях ионы редкоземельных элементов находились в металлической решетке в комбинации только с немагнитными партнерами. Как мы видели, вполне достаточная ясность в понимании физических свойств этих веществ была достигнута путем использования несложного представления о механизме косвенного обмена, обеспечивающего магнитную связь. Когда же соединения содержат ионы, несущие моменты, например ионы переходных металлов, таких, как марганец, железо, кобальт и т. д., мы можем ожидать появления гораздо более сложного магнитного поведения в связи с разнообр азием магнитных обменных взаимодействий, которые теперь становятся возможными. Кроме того, можно ожидать и структурных превращений, обусловленных изменяющейся концентрацией электронов в -состояниях ионов переходного металла. [c.69]

    Еслп в качестве исходного сырья применяют смесь пиролюзита с оксидами железа, то образуется сплав марганца с железом — ферромаргаггец. Поскольку Мп, в основном, используют как добавку в различных сортах стали, то обычно выплавляют не чистый Мп, а ферромарганец. Марганец получают также электролизом водного раствора MnS04. Небольшое количество металлического марганца в лаборатории легко приготовить алюмотермическим методом  [c.544]

    ХИМИЧЕСКИ СТОЙКИЕ МАТЕРИАЛЫ — материалы, применяемые в химической промышленности, машино-и приборостроении, как защитные и конструкционные материалы, устойчивые против коррозии при действии различных агрессивных веществ (кислот, щелочей, растворов солей, влажного газообразного хлора, кислорода, оксидов азота и т. д.). X. с. м. делятся па металлические и неметаллические. К металлическим X. с. м. относятся сплавы на основе железа с различными легирующими добавками, такими как хром, никель, кобальт, марганец, молибден, кремний и т. д., цветные металлы и сплавы на их основе (титан, цирконий, ниобий, тантал, молибден, ванадий, свинец, никель, алюминии). К неметаллическим X. с. м. относятся различные органические и неорганические вещества. X. с. м. неорганического происхождения представляют собой соли кремниевых и поликрем-ниевых кислот, алюмосиликаты, кальциевые силикаты, кремнезем с оксидами других элементов и др. X. с. м, органического происхождения подразделяются на природные (дерево, битумы, асфальты, графит) и искусственные (пластмассы, резина, графитопласты и др.). Наибольшую химическую стойкость имеют фторсодержащие полимеры, которые не разрушаются при действии почти всех известных агрессивных веществ и даже таких, как царская водка. Высокой химической стойкостью отличаются также графит и материалы на его основе, лаки, краски, применяемые для защиты металлических поверхностей. [c.274]

    Металлический хром, полученный промышленным алюмотермическим способом, содержит 98% хрома. Основная примесь в нем — железо. При алюмотермическом восстановлении смеси оксидов СггОз с Т10г или МпОз, УгОз, М0О3 н т. Д. получают сплавы хром — титан, хром — марганец, хром — ванадий, хром — молибден. Алюминий можно заменить кремнием, реакция идет при подогреве  [c.377]

    Водородистые соединения интерметаллического характера. Соединения этого типа образуют только металлы. Следует различать два типа соединений металлические и переходные от металлических к солеобразным. Первые из них представляют собой твердые растворы водорода в металле. Процесс растворения водорода в металле происходит с поглощением тепла. Так как водород захватывается в микроскопических щелях кристалла, то кристаллическая решетка металла частично видоизменяется. Больше всего растворяется водород в палладии соотношение атомов при этом отвечает составу Рс1Но,з9. Помимо палладия, металлические соединения с водородом образуют некоторые другие металлы железо, хром, медь, марганец и платиновые металлы. [c.97]

    В качестве катализаторов применяли иикепь металлический, оксид никеля, никель азотнокислый, никель сернокислый, никель муравьинокислый, никель шавелевокислый, оксид кобальта, оксид марганца, оксид хрома, оксид железа, предварительно восстановленные водородом при температуре 500°С, промьниленные катализаторы никель-марганцевый, железо-хромовый, алюмо-никель-молибденовый, интерметаллическое соединение цирконий-никелевый гидрид ультрадисперсные оксиды металлов кобальт-никель-марганец-хром, медь-хром-марганец-кобальт, медь-хром-кобальт-1шкель-марганец, медь-кобальт-хром-железо-ннкель-марганец, а также двухкомпонентные катализаторы на основе металлов подгруппы железа. Физико-химические свойства их приведены в табл.7. [c.42]

    Если электрическая дуга возникает между металлическими электродами при продувании между ними воздуха, то пары металла, выделяющиеся при очень высокой температуре, при охлаждении в воздушном потоке конденсируются в виде дыма Легко окисляющиеся метаплы, например кадмий, свинец, медь, марганец, хром, магний и алюминий образуют дымы, состоящие из их окислов в то время как из платины серебра и золота получаются металлические дымы Дымы получаемые из меди и железа состоят из смеси различных окислов При получении дымов этим способом конденсация пара облегчается благодаря присутствию [c.40]

    Главное отличие заключается в том, что металлический марганец тверже и обладает большим блеском, планптся при более низкой температуре, чем железо. [c.12]

    Образец в виде пластинки толщиной 2 мм и эталонный образец металлического железа толщиной —120 мк облучают в циклотроне в течение 2 час. протонами с энергией 17 Мэе с интенсивностью пучка 10 мка/см . Облученный образец протравляют на глубину 50 мк, растворяют, отделяют марганец в присутствии носителя кобальта. Осаждают oS при pH 4—5, осадок растворяют, сорбируют кобальт на смоле дауэкс-1 из 6 iV H l и затем десорбируют его 4 N НС1 и измеряют активность Со (Г, = 77 дней, = 0,85 и 1,24 Aise). Погрешность определения 10%. [c.164]

    Исследования напыленных металлических пленок [60, 61] показывают, что для некоторых переходных металлов (например, родия, вольфрама, молибдена, кобальта, никеля) быстрая адсорбция кислорода при 77—90 К и давлении около 10 Па ( -lO" мм рт. ст.) ограничена заполнением монослоя с Хт -Достаточно надежно можно считать, что другие благородные металлы VIII группы ведут себя аналогично. Однако поглощение кислорода на железе в этих условиях намного превышает емкость монослоя, так же ведет себя титан. Если кислород адсорбируют при комнатной температуре, в список металлов, адсорбирующих больше монослоя кислорода, кроме железа и титана, входят хром, марганец, тантал, кобальт, никель и ниобий, хотя на благородных металлах быстрое поглощение кислорода все еще ограничено приблизительно монослоем [62]. [c.313]

    После химического окисления необходк.мо проводить эффективное фильтрование, так как значительное количество хлопьевидных металлических окислов не осаждается под действием силы тяжести. При поступлении железа и марганца в фильтр на поверхности загрузки о бразуются пленки из окислов, что повышает эффективность фильтрования. Практика показала, что новые фильтры пропускают марганец до тех пор, пока зерна загрузки не покроются пленкой из окисла, образующегося в процессе фильтрования воды. [c.202]


Смотреть страницы где упоминается термин Марганец в железе металлическом: [c.799]    [c.403]    [c.186]    [c.19]    [c.69]    [c.355]    [c.73]    [c.117]    [c.72]    [c.100]    [c.57]    [c.115]    [c.12]    [c.197]    [c.140]   
Химико-технические методы исследования (0) -- [ c.122 ]




ПОИСК





Смотрите так же термины и статьи:

Железо металлическое

Металлический марганец



© 2025 chem21.info Реклама на сайте