Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение серебра платине

    ПРОБИРНЫЙ АНАЛИЗ — метод определения благородных металлов (золота, серебра, платины и др.) в рудах, продуктах их переработки, в сплавах, готовых изделиях с использованием химико-металлургических процессов (выплавка, купелирование и др.). [c.204]

    Растворы дитизона применяют для фотометрических определений серебра, висмута, кадмия, кобальта, меди, ртути, свинца, платины (IV), никеля, индия, цинка. [c.144]


    Препятствующие анализу вещества. Дитизон является очень чувствительным реактивом, поэтому необходима очень тщательная очистка воды и реактивов от тяжелых металлов, которые взаимодействуют с дитизоном. Однако при определении серебра не требуется тщательно очищать дитизон и реактивы от тяжелых металлов, так как титрование серебра производят в кислой среде, где многие металлы не мешают анализу. Определению мешают платина, палладий, ртуть, а также медь и висмут, если их содержание в 10 и более раз выше содержания серебра. Значительно большие затруднения вызывают анионы, которые связывают серебро в труднорастворимые соединения, галогениды, роданид и др. Поэтому воду, применяемую для работы, лучше очищать при помощи анионитов в ОН-форме. Мешают также сильные окислители азотистая кислота, перманганат, хромат и другие, которые разрушают дитизон. [c.143]

    Метод основан на экстрагировании серебра из кислых сред растворами дитизона в органических растворителях. В результате взаимодействия серебра с дитизоном образуется дитизонат серебра. Из растворов, содержащих хлориды, серебро количественно экстрагируется при pH 5 в присутствии трилона Б, который связывает металлы, мешающие определению, В интервале изменения pH от 3,5 до 5 в присутствии трилона Б кроме серебра хорошо экстрагируются ртуть и двухвалентная платина, В питьевой воде эти металлы не содержатся, а потому при определении серебра их влияние исключается. [c.548]

    Мешающие вещества. Определению мешают золото, платина, палладий и ртуть, реагирующие в кислой среде так же, как серебро. Медь(II) не мешает определению. Мешают все анионы, образующие с серебром комплексные или малорастворимые соединения цианид-, роданид-, тиосульфат-, хлорид-ионы. Поэтому перед определением серебра необходимо проведение предварительного выпаривания с азотной и серной кислотами (см. разд. 6.1.2). [c.149]

    В качестве индикаторного электрода, реагирующего на изменение концентрации определяемого иона в растворе, применяют металл, потенциал которого зависит от концентрации его соли в растворе (например, серебро для определения концентрации ионов серебра) платину или другой инертный металл, потенциал которого изменяется главным образом в зависимости от концентрации [c.68]

    Наиболее часто для работы при комнатных темп-рах употребляются калориметры с жидкостью (обычно водой), наз. иногда обыкновенными калориметрами. Н идкостные калориметры различных конструкций с успехом применяют при определениях теплот сгорания, теплот растворения, нейтрализации и других химич. реакций, при определении теплоемкостей твердых и жидких тел, теплот испарения и т. д. Калориметрич. сосуд, имеющий вместимость от 50 до 4000 мл, изготовляется чаще всего из металла с хорошей теплопроводностью (медь, серебро, платина). Нередко также в качестве калориметрич. сосуда употребляются стеклянные сосуды Дьюара. [c.183]


    Другой раздел работы Бергмана посвящен анализу определенных руд в нем описывается определение золота, серебра, платины, ртути, свинца, меди, железа, олова, висмута, никеля, мышьяка, кобальта, цинка, сурьмы и марганца в рудах. В качестве примера рассмотрим несколько подробнее анализ свинца [129]. [c.67]

    В эту рубрику вошли добыча золота, серебра, платины, меди, свинца, цинка, олова, ртути, чугуна, каменного угля и соли, чугунное и медное литье, выделка железа, стали и рельсов, но не вошла добыча марганцовых, хромовых и тому подобных руд, серы, асфальта, нефти, фарфоровой глины, фосфоритов, глауберовой соли и серного колчедана, которые за прежние года не были известны и внесены в сумму горнозаводской производительности, данной для 1890 г. в следующей таблице (табл. 5). При определении ценности добычи приняты цены, данные далее (при табл. 5). Вследствие однообразия принятых цен получаемые суммы [c.182]

    Рутений иногда обнаруживают в пробирных корольках, полученных из руд, и часто в корольках из металлургических концентратов, где его содержание выше. Для определения этого металла были выполнены некоторые исследования, но удовлетворительной воспроизводимости получить не удалось. Не удалось также получить свинцовые корольки, в которых рутений распределен равномерно, даже в том случае, если золото, серебро, платина, палладий и родий распределены в них равномерно. [c.295]

    Определению серебра мешают ртуть, золото, палладий, платина и большие количества меди, однако влияние этих элементов можно устранить, обрабатывая дитизонаты роданидом аммония. При этом только дитизонат серебра разрушается, серебро переходит в водный раствор, образуя комплекс с роданидом. [c.25]

    Окраска развивается мгновенно и устойчива в водных растворах 15 дней (в неводных — 12 ч). В присутствии комплексона И не мешают определению стократные количества шестивалентных ионов вольфрама, молибдена и урана, четырехвалентных осмия, платины, тория и циркония, трехвалентных алюминия, золота, висмута, железа, лантана и родия, двухвалентных бария, кальция, кобальта, меди, железа, ртути, магния, марганца, никеля, свинца, стронция и цинка, одновалентных калия, лития и натрия, а также анионы — бромид, хлорид, ацетат, карбонат, оксалат, фторид, фосфат, иодид, нитрит, нитрат, сульфид, сульфит и сульфат. Сильно мешают цианид-ионы и ионы четырехвалентного иридия. Результаты, полученные авторами, говорят о том, что предлагаемая система весьма перспективна для фотометрического определения серебра. Недостатком системы является фотохимическая нестойкость реагента [29]. [c.50]

    В бинарных металлических системах со сходными диаграммами состояния краевые углы тем меньше, чем ближе точки плавления металлов. Это наблюдение указывает на связь смачивания с растворением твердого металла в жидком, поскольку оно идет тем интенсивнее, чем ближе друг к другу точки плавления твердого и жидкого металлов [130]. При контакте жидких щелочных металлов с непереходными твердыми металлами (медь, золото, серебро, платина, палладий, цинк) в атмосфере аргона полное смачивание происходило в тех случаях, когда отношение атомных радиусов жидкого и твердого металлов было меньше определенного критического значения (1,40 — для натрия 1,56 — для калия). Эта корреляция объясняется тем, что на поверхности раздела фаз происходит перестройка расположения атомов в жидкой фазе перестройки осуществляются легче, чем в твердом теле, поэтому и нарушения прежнего порядка в жидкости должны быть больше. Чем сильнее эти нарушения, тем больше должна быть межфазная свободная поверхностная энергия в свою очередь нарушения тем сильнее, чем больше отношение атомных размеров жидкости и твердого тела [132]. [c.91]

    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]


    Электроосаждение из неводных сред металлов четвертой группы представляет интерес прежде всего для германия и подгруппы титана, поскольку эти металлы электролитически из водных растворов не осаждаются [484, 404]. Наилучшие результаты получены в случае германия. Из спиртовых растворов (преимуш ественно в двухатомных спиртах) галогенидов германия выделены тонкие катодные пленки металлического германия [702, 641, 1225, 482, 381, 292, 650, 291, 293]. Наряду с осаждением германия на катоде происходит выделение водорода, на последний процесс расходуется основная часть тока. Выход по току германия низкий (порядка 1—3 %) Большое влияние на процесс злектроосаждения оказывает природа металлической подложки. При определенных концентрациях галогенида германия, повышенных плотностях тока и температурах возможно катодное образование диоксида германия [482, 196]. Пример оптимальных условий получения металлического германия растворитель — этиленгликоль, концентрация ОеСи — 3—5 %, температура — комнатная, интервал плотности тока 5—50 А/дм . При этих условиях на подложках из меди, серебра, платины и алюминия осаждаются ровные, хорошо сцепленные с подложкой, компактные германиевые покрытия светло-серого цвета. В качестве анода использовали графит или германий, выход по току германия составляет 2 % [291, 293]. Возможно катодное получение пленок германия и из других неводных сред, например из низкотемпературных расплавов ацетамида [147]. Из растворов в ацетамиде с добавками хлорида аммония при температуре 90—130 °С двухвалентный германий восстанавливается, образуя тонкослойные (1—2 мк) осадки, прочно сцепленные с подложкой. Выход по току еще ниже, чем в спиртовых растворах (приблизительно 0,1—0,5 %) Из-за выделяющегося водорода осадок германия при этом достаточно наводорожен. [c.157]

    Операций по отделению золота и серебра можно избежать, титруя палладий (II) раствором-иодида калия , с которым палладий (II), так же,как и серебро, дает осадки, практически нерастворимые в воде, но сильно отличающиеся по растворимости в аммиаке константы нестойкости аммиачных комплексов палладия и серебра отличаются больше чем на 20 порядков. Отсюда следует, что из аммиачной среды в осадок будет выпадать только иодид серебра (/( ест = 5,89 10 ), а палладий останется в растворе (К нест = 2,5 10 °). Золото (III) не может мешать при этом титровании, равно как не мешают ему и цветные металлы, даже в 100—1000-кратном избытке (см. описание иодидного метода определения серебра в разделе Серебро ) не Ьказывают влияния и ионы платины. [c.279]

    Для определения свинца могут быть применены различные серосодержащие органические соединения -гв однако они реагируют также с целым рядом других ионов (см. разделы, посвященные висмуту, кадмию, меди, ртути, серебру, платине). В некоторых случаях возможно раздельное определение свинца и сопутствующего ему элемента, например при титровании диэтилдитиокарбаматом в присутствии ртути . Это титрование описано в разделе Ртуть . С некоторыми реактивами, такими как диэтилдитиокар- [c.290]

    Метод с дитизоном применялся в качестве скоростного микрометода для определения серебра и благородных металлов. Так, Шима [53 " ] определял серебро и золото в рудах, Эрдей и Флепс [54 , 54 ] — серебро, палладий, платину, золото и медь, Фридеберг [55 ] — серебро наряду с ртутью и медью. [c.158]

    В. Л. Гинзбург, Д. М. Ливщиц, Г. И. С а т а р и и а, ЖАХ, 19, 1089 (1964). Определение серебра, золота, палладия, платины и родия методом атомно-абсорбционной пламенной спектрофотометрии. [c.228]

    Метод ИВА был использован для косвенного определения ртути, платины, золота и серебра . В качестве реагента применяли тиомочевину, тионалид, 2-меркаитобензтиазол и дитиооксамид. Был предложен косвенный метод определения ионов в рас- [c.159]

    Платина, сплавленная с серебром, до известной степени растворима в азотной кислоте. Из зерна благородных металлов, доведенного до отношения квартации (золото платина серебро = 1 3), можно извлечь серебро платину азотной кислотой, а золото определить в остатке. Применяя серную кислоту, растворяют лишь одно серебро, а золото платина остаются в остатке. Для правильного проведения разделений все-таки необходимо, чтобы металлы всегда находились в определенном весовом соотношении между собой (см. ниже). [c.346]

    Для расширения определения числа примесей кроме ртутного электрода применяют также твердые электроды (серебро, платина, графит и др.), на которых сначала электрохимически концентрируют примеси в виде пленки, которую затем растворяют катодно или анодно (в зависимости от ее природы) при непрерывно изменяющемся потенциале. При этом также наблюдается линейная зависимость между величиной гока и концентрацией ионов в растворе. [c.89]

    Определенное количество вещества, теплоемкость которого хогят исследовать, запаивают в ампул-ку I, из которой предварительно откачивается воздух. Материалом ампулки может служить серебро, платина, кварц и др. Далее ам-пулку с веществом подвешивают во внутреннем пространстве электрической печи 2 и производят нагрев до необходимой температуры, величина которой контролируется введенной в печь термопарой 5. Когда установится постоянство температуры, пережигают проволочку, удерживающую ам-пулку, после чего она свободно падает в калориметр, расположенный под печью. Главной частью калориметра является тонкостенный металлический стакан [c.43]

    В 1958 г. Отт и Корпет [810] предложили методику, по которой капель вынимают из печи и помещают в струю азота, так что свинцовый королек быстро охлаждается не окисляясь. Вес королька можно сохранить близким к желательной величине, хотя для этого нужно знать, в какой момент времени вынуть капель из печи. Методика неполного купелирования требует только одной серии эталонов для определения золота, серебра, платины, палладия и родия в свинце. Она еще не дала удовлетворительных результатов для количественного определения рутения, иридия и осмия, но применялась для определения других благородных металлов в лаборатории автора. Иногда еще применяют методику с использованием постоянного содержания золота или серебра, в частности для корольков, полученных на анализ из посторонних источников. Все три способа включены в методику, названную методикой Ричвела. [c.290]

    Основные принципы атомноабсорбционной спектроскопии были сформулированы Уолшем [858] в 1955 г. Главными достоинствами метода являются возможность определять следы элементов и меньшее влияние на это определение третьих элементов, чем для большинства физикоаналитических методов. Локайер и Хейме [859] сообщили об определении золота, серебра, платины, палладия и родия при содержании Элуэлл [860] нашел, что предел чувствительности для платины составляет 5-10 %, для палладия 0,8-10 7о и для родия 0,3-10- %. [c.339]

    Весы микроаналитические СМД-1000. Предназначены для точного определения массы золота, серебра, платины и других драгоценных металлов и минералов в золотоплавочных и приисковых лабораториях, а также в лабораториях научно-исследовательских институтов (фиг. 23 — см. в конце книги). [c.22]

    При определении серебра роданиновьш методом недопустимо присутствие в растворе ионов платины, золота, меди и ртути, а также анионов, связывающих серебро тяжелые металлы могут быть замаскированы комплексом И1 [16]. Применение родани-нового метода определения серебра к сложным объектам требует практически полного отделения серебра от сопутствующих ионов и строгого контроля кислотности конечных растворов. [c.47]

    Интенсивно окрашенный комплекс тетрапиридин-Ад (И)-персульфат [25] применен для качественного и количественного определения серебра в веществах сложного состава (силикатах). Калибровочная кривая прямолинейна в интервале 2—18 мкг мл. Не мешают определению платиновые металлы (платина, палладий, родий и осмий). Мешают ионы двухвалентного железа, ванадия, меди, никеля, кобальта и урана. [c.49]

    Хронологически, первым типом является открытый макроэлектрод. Он представляет собой пластинку или проволоку из благородного металла (золота, серебра, платины), опущенную в исследуемую среду. Электрод такого типа впервые использован для определения динамики выделения кислорода в суспензии растительных клеток при освещении (Блинке, Скау, 1938). Основным достоинством открытых макроэлектродов является относительная простота их изго-товлеиия. Ток восстановления кислорода на таких электро,-дах достигает значительных величин, и его регистрация нё вызывает затруднений. Однако стационарное состояние на макроэлектродах устанавливается за время порядка 10 с. Поэтому использование их при регистрации сравнительно быстрых процессов выделения кислорода по предельному току не обеспечивает достаточной точности измерений. Кроме того, макроэлектроды в ходе измерений потребляют значительное количество кислорода из раствора. Выработка кислорода происходит на расстоянии порядка 0,2—0,3 мм от поверхности электрода. Обеднение значительного объема электролита (суспензии клеток или органоидов) кислородом может исказить результаты измерений в силу того, что определенная часть суспензии находится в условиях, близких к анаэробным, а остальная — в аэробных условиях. [c.207]

    Для определения скорости реакций на 1 поверхности необходимо знать величину удельной поверхности катализатора, которая определяется по низкотемпературной адсорбции некоторых инертных газов — азот, криптон. Однако в сложных катализаторах, как показали микроскопические исследования, активное вещество распределяется неравномерно и занимает небольшую долю поверхности носителя. Поэтому необходимо было разработать методику определения раздельной поверхности носителя и катали--затора. Для некоторых металлических катализаторов (серебро, платина и др.) поверхность металла определялась по хемосорбции различных газов и паров, не адсорбирующихся на носителях. Для определения удельной поверхности серебряного катализатора Ру-баник и Халяв нко использовали кислород поверхность окиси и закиси меди, нанесенных на карборунд, определяется по хемосорбции кислорода и окиси углерода [79]. [c.24]

    Платина. Вследствие очень малой химической активности и высокой температуры плавления (1770°С) платина является ценнейшим материалом для изготовления различных химических приборов и сосудов (тиглей, чашек, электродов для электрогра-виметрических определений и т. д.). Однако, несмотря на большую устойчивость платины, хлор, бром, царская водка (смесь концентрированных HNO3 и НС1), едкие щелочи ее разрушают. Платина об )азует сплавы со свинцом, сурьмой, мышьяком, оловом, серебром, висмутом, золотом и др. Соединения указанных элементов в платиновой посуде нагревать нельзя. [c.45]

    Влияние природы и концентрации ионов металлов. Как известно, ионы РЬ, 8п, В1, Те, Сс1, Си, Ag и других металлов восстанавливаются на катоде из растворов простых солей в отсутствие специальных добавок при сравнительно малой, а некоторые из нух (РЬ, 5п, Ад) при едва заметной, катодной поляризации. Образующиеся осадки этих металлов имеют крупнозернистую структуру или растут в виде отдельных изолированных кристаллов (или агрегатов кристаллов), ориентированных по линиям поступления ионов, как, например, осадки свинца, серебра из азотнокислых растворов, олова из сернокислых растворов и др. Только в присутствии определенных для дачного электролита поверхностно-актий-ных вендеств (ПАВ), вызывающих сильное торможение процесса, некоторые из этих металлов образуют мелкозернистые осадки, часто с ориентированными субмикроскопическими частицами. Наоборот, металлы группы железа, платины, а также хром и марганец выделяются из растворов простых солей даже в отсутствие ПАВ с высоким перенапряжением и образуют очень мелкозернистые осадки с волокнистой структурой. [c.340]

    В этих работах в качестве подложки использовались монокристаллы, например, платины, на которые осаждали серебро, свинец или ртуть. На электрод накладывался двойной импульс потенциала. Высота первого импульса длительностью подбиралась такой, чтобы на поверхности электрода могли возникать трехмерные кристаллические зародыши. В ходе второго импульса, называемого импульсом проявления , эти кристаллики выращивались до таких размеров, чтобы их можно было обнаружить под микроскопом. Таким образом, потенциал второго импульса был достаточным для роста образовавшихся, но не для возникновения новых зародышей. Для проверки теории, выбрав определенную длительность Tj первого импульса, постепенно увеличивали его высоту, пока, наконец, не достигали такого перенапряжения tij, при котором образовывался лишь один зародыш. Затем увеличивали длительность импульса до и снова определяли перенапряжение TI2, при котором такх<е образовывался один зародыш, и т. д. Так как в ходе первого импульса возникал каждый раз лишь один зародыш, что требовало затраты одного и того же количества электричества <7 = /iTj = /2Т2. .. = onst, то [c.332]


Библиография для Определение серебра платине: [c.120]   
Смотреть страницы где упоминается термин Определение серебра платине: [c.27]    [c.139]    [c.1573]    [c.76]    [c.31]    [c.661]    [c.188]    [c.346]    [c.227]    [c.329]    [c.183]    [c.20]    [c.431]    [c.58]    [c.317]   
Аналитическая химия серебра (1975) -- [ c.209 ]




ПОИСК







© 2024 chem21.info Реклама на сайте