Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Предварительное

    Предварительно задаемся температурой газов на перевале 850° С. Температура воздуха в = 20° С. [c.136]

    На основании предварительных расчетов установлено, что при двух потоках потеря напора в змеевике печи чрезмерно велика. Поэтому разбиваем змеевик на четыре потока. [c.137]

    Немецкий физик Альберт Эйнштейн (1879—1955) в 1905 г. показал, что это движение может быть обусловлено бомбардировкой частиц молекулами воды, толкающих молекулы то в одну, то в другую сторону. Эйнштейн вывел уравнение, с помощью которого можно вычислить действительные размеры молекул воды, определив предварительно параметры движущихся частиц. [c.116]


    Щавелевокислый кальций совершенно не растворяется в воде. Этим нередко пользуются химики. Иногда им нужно узнать, сколько ионов кальция содержится в том или ином веществе. Тогда они растворяют это вещество в воде предварительно, если это необходимо, обработав его таким образом, чтобы оно растворялось в воде), а потом добавляют в раствор какое-нибудь соединение, содержащее ион щавелевой кислоты. Он тут же соединяется со всеми или почти со всеми ионами кальция, какие только есть в растворе. Образуется нерастворимый щавелевокислый кальций, который и выпадает в осадок—выделя- [c.163]

    Нестабилизованный бензин, предварительно подогретый паром в специальном теплообменнике, поступает в колонну, работающую под давлением 6—10 ат. [c.17]

    Кислород, нагретый примерно до 315°, и предварительно нагретый до 650° природный газ под давлением 20 ат (рабочее давлепие синтеза) подаются в футерованную огнеупорным материалом камеру сгорания, где температура достигает 1350°. [c.28]

    Способ получения водорода из углеводородов схематически представлен на рис. 11. Пропан (который здесь взят в качестве примера) предварительно подогревается до —370° и приводится в контакт с бокситом здесь содержа- [c.29]

    Процесс, при котором образуются более высоко кипящие продукты, чем исходное сырье, можно рассматривать как результат вторичных реакций при крекинге. В результате этих вторичных реакций по большей части и идет образование кокса. Образование кокса при крекинге в общем тем больше, чем тяжелее исходное сырье. Это связано с повышенным содержанием ароматических углеводородов в сырье и, следовательно, с его обеднением водородом, что ведет к образованию высококонденсированных, не растворимых в углеводородах веществ. Кокс не является чистым углеродом — оп содержит еще некоторое количество водорода и летучих соединений. С другой стороны, крекинг идет тем труднее, чем ниже пределы выкипания фракций. Поэтому, если очень широкая фракция подвергается крекингу в условиях, обеспечивающих расщепление ее наиболее низкомолекулярной части, то одновременно более высококинящая часть ее, расщепляясь, дает много кокса. Чтобы этого избежать, необходимо крекинг-сырье предварительно разделять на фракции, кипящие в относительно узких пределах, и каждую из фракций подвергать крекингу в наиболее подходящих для нее условиях (селективный крекинг). [c.38]

    Линии I — предварительно подогретое сырье II — пар III — тяжелое масло расщепления IV — гаа V — газовый бензин VI — газойль VII — легкое котельное топливо. [c.56]

    От газов, содержащих ацетилен, необходимо предварительно его отделить чаш,е всего его отделяют селективным гидрированием в этилен. Таким путем ацетилен выделяется из газа почти количественно. Метан и водород можно отделять промывкой газовой смеси маслом, в котором растворяются углеводороды с двумя и большим числом углеродных атомов, метан и водород не абсорбируются маслом и удаляются из установки. Газообразные углеводороды выделяются [c.69]


    По окончании дегидрирования реактор эвакуируют (удаляют еще оставшиеся в нем углеводороды), а затем выжигают кокс с подачей в реактор предварительно подогретого воздуха. [c.87]

    I — предварительный подогреватель 2 — реактор о катализатором 3 — компрессор 4 — абсорбер 5 — испаритель. Линии I — и-бутан II — тощее масло III — На -Ь наиболее легкие углеводороды IV — к-бутан 4- н-бутен (циркуляция) V—бутадиен VI — жирное масло. [c.90]

    Горячие продукты сгорания соединяются в зоне смешения с идуш им на пиролиз сырьем, предварительно также подогретым до 600° в присутствии водяного пара. В зоне смешения, которой заканчивается камера сгорания, сужением поперечного сечения достигаются очень высокие скорости газового потока. Отсюда смесь поступает в реакционную зону, где пиролиз заканчивается. После выхода газа из этой зоны они охлаждаются до температуры ниже 100° посредством впрыска воды, чтобы стабилизировать продукты пиролиза. [c.98]

    Давление водорода равно 14— 70 ат. Высокое давление водорода здесь, как и в гидроформинг-процессе, позволяет практически полностью предотвратить коксообразование и получить насьщенные продукты реакции. Сера должна предварительно удаляться из сырья каким-либо каталитическим способом, например гидроочисткой, так как катализатор чувствителен к ее действию. [c.106]

    В США 11% производства аммиака базируется на таком водороде. Предварительное выделение его в чистом виде легко осуществляется при помощи гиперсорбции. [c.106]

    Сырая смесь, состоящая примерно из 15,8% ге-ксилола, 39,6% л1-кси-лола, 20,0% о-ксилола, 18,9% этилбензола, 3,5% толуола и 2,5% парафиновых и нафтеновых углеводородов, просушивается над окисью алюминия, чтобы полностью освободиться от влаги. Далее смесь проходит в теплообменник, где охлаждается до —32° здесь уже начинается кристаллизация. Холодильник снабжен скребковым устройством для устранения помех в теплопередаче. После этого предварительного охлаждения продукт поступает в главный холодильник, где охлаждается до —70° и, наконец, центрифуги-I руется. В виде твердой фазы выделяется 80%-ный п-ксилол, составляющий в совокупности 55—60% всего содержавшегося во фракции ге-ксилола. Отжатые на центрифуге кристаллы и-ксилола поступают далее в специальную емкость, где подогреваются до -f-24° и при этом расплавляются, а затем вновь подвергаются ступенчатой кристаллизации, охлаждаясь сначала до -J-7°, а затем до —18° при этой температуре они центрифугируются. Чистота полученного таким образом и-ксилола составляет 95%. Фильтрат, содержащий еще 40% п-ксилола, смешивается со свежим исходным продуктом. [c.110]

    Если в распоряжении имеется только смесь бутенов в том виде, как получается с установок дебутанизации крекинг-заводов, в которой содержится также изобутен, то в процесс переработки должны быть внесены изменения, предусматривающие предварительное удаление изобутена, так как при тех условиях, которые необходимы для гидратации бутена, неизбежна сильная полимеризация изобутена. [c.203]

    Получение полиэтилена при среднем давлении. Способ получения полиэтилена при средних давлениях разработан в США фирмой Филлипс Петролеум Компани [61]. Процесс ведется при температуре 180—250° и давлении 35—105 ат. Этилен, предварительно полностью освобожденный от сернистых соединений, кислорода, водяных паров и углекислоты, растворяется под давлением при 20—30° в ксилольной фракции в количестве 7—9% вес. и подвергается полимеризации в трубчатом автоклаве над катализатором из окисей хрома и молибдена, нанесенных на окись алюминия или алюмосиликат. Целесообразнее применять большой избыток растворителя, чтобы полиэтилен оставался в растворе, а не отлагался на катализаторе, пассивируя его. Кроме того, при этом [c.223]

    Графики (рпс. 80, 81) служат для предварительной прибли кенной оценки величины эквивалентной абсолютно черной поверхности пс заданной допустимой температуре газов па перепале, максимальной температуре горепия, температуре экрана и общему количеству тепла, введенного в топку. График на рис. 80 построен для температуры поверхности экрана 200° С. График па рпс. 81 служит для внесенпя поправки на температуру экрана, отличную от 200° С. [c.125]

    После этого, пользуясь графиком (рис. 79) находим значение Яа/Яп и далее Яд и Р, предварительно задавшись степенью эиранирования г)). [c.127]

    Предварительно задаемся давлением j в начале участка пснаренпя i aOG-Siki I = 10,2 ат = 10 бар. По кривой рис. 101/ 7 находим, что этому давлению отвечает reti- -ператур закипания нефти 276° С. [c.142]

    Для предварительной оцеггки размеров поверхностп пагрева выбираем исходя нз практических данных, коэффи](Н(Чгг теп.топередачп К 110 ккал м Х. 4 °С. Определяем ориентировочно значение с])сднон разности температур ири полном противотоке [c.161]

    При помощи последних двух уравнений можно приближенно строить кривые равновесия фаз, определив предварительно значение коэффициента обогащения. Из этих уравнений следует, что если один компонент содержится в кидкоп фазе, он обязательно будет присутствовать и в паровой фазе и наоборот. [c.193]

    Существует точка зрения, что схема II более экономична, чем схемы I и III. Одпако это положение далеко не всегда верно. Так, исследования автора по фракционировке газов каталитического крекинга показали, что когда содержание наиболее тяягелого компонента — бензина — в смесп намного больше, чем нодле кащих выделению компонентов, а температура кипения его много выше, наиболее экoнoмичнoii является не схема II последовательного выделения легких компонентов, а схемы I н III предварительного выделения наиболее легких компонентов с последующей их фракциопировкой, [c.222]


    Почти все органические соединения, перечисленные в предыдущем разделе, состоят из молекул, количество атомов в которых чаще всего не превышает пятидесяти эти атомы с трудом распадаются в условиях умеренной химической обработки. Однако существуют органические соединения с поистине гигантскими молекулами, построенными из тысяч и даже миллионов атомов. Эти молекулы состоят из сравнительно небольших строительн ых блоков Такие гигантские молекулы легко разложить на образующие их блоки, которые можно исследовать. Так, например, поступил Левин, изучая нуклеотиды (см, предыдущий раздел). Предпринимались также попытки изучать эти гигантские молекулы как таковые, не разрушая их предварительно. Первые шаги в этом направлении предпринял шотландский химик Томас Грэхем (1805— [c.127]

    Термическое взаимодействие метана с водяным паром происходит при 1200—1300°. В присутствии никелевого катализатора взаимодействие становится возможным при 700—800°. Каталитический спозоб, в котором природный газ (в целях предотвращения отравления никелевого катализатора) должен предварительно освобождаться от сернистых соединений, в промышленности уже давно разработан [20].. Грубая очистка предусматривает удаление неорганической серы, главным образом в виде сероводорода. Она происходит над так называемой люкс-массой (окись железа— красный шлам бокситиых отходов) или над бурым железняком при обычной температуре. Тонкая очистка, имеющая целью удаление органической серы в виде сероуглерода или сернистого карбонила, осуществляется над щелочной люкс-массой при температуре 250—300°. [c.28]

    В промышленных условиях для полного превращения 1 кг бутана требуется примерно 550 ккал. Подведение такого большого количества тепла представляет технически трудную проблему. Для решения ее имеется в принципе три возможности. Во-первых, расположение катализатора в трубках, обогреваемых снаружи газом (иОР-процесс) [15]. Во-вторых, тепло, необходимое для дегидрирования, предварительно накапливается в реакторе таким образом, что совместно с катализатором в зону дегидрирования вводится некатализирующий материал, обладающий высокой теплоемкостью. Так как катализатор для освобождения от коксовых частиц, делающих его неактивным, время от времени подвергается регенерации путем выжигания в струе воздуха, и при этом освобождается большое количество тепла, то в дальнейшем тепло, приносимое катализатором в реактор, используется для осуществления реакции дегидрирования. Но количество тепла, накопленное при этом в катализаторе, вернее в теплоносителе, ограничено, поэтому необходимо, чтобы процесс регенерации проходил за возможно короткое время (7—15 мин.). В случае необходимости можно также в период регенерации подводить к катализатору еще искусственное тепло (процесс Гудри [16]). [c.47]

    Способ работы в основном следующий (рис. 26). Предварительно подогретое сырье для пиролиза подается непосредственно на коксовые шарики, подогретые в трубчатом подогревателе 4 до 650—750°, и подвергается разложению. Образование кокса полностью завершается в примыкающем реакторе 6. Газы пиролиза идут далее в охладитель 10, где они быстро охлаждаются тяжелым маслом. Наконец в колонне 11 они разделяются па газ, бензин, газойль и мазут. Газ идет далее на разделительную установку. Кокс проходит испарительную зону и из нее в бункер подъемника 7, откуда он горячим газом пневматически транспортируется в коксоулавливатель 1. Отсюда коксовые шарики через разделитель 2, где они сортируются, направляются в промежуточный сосуд 3 и далее в коксонагреватель. Газы газлифта очищаются от твердых частиц в циклоне 9 и горячей воздуходувкой 8 возвращаются в буикор газлифта. Результаты работы подобной установки приведены в табл. 29. [c.57]

    Сначала посредством предварительно ректификации в соответствующей колонне из смеси выделяют три первых углеводорода из указанных в табл. 4, имеющих пиз ие температуры кииения, а именно изобутан, изобутен и бутен-1. Большая часть обоих бутепов-2 и н-бу-д f тан остаются в колопне ка 1 остаток. Изобу- [c.79]

    При избытке водяного пара порядка 10—15 модой на 1 моль бутена последний дегидрируется примерно па 25%. Предварительно пар перегревается до 700°, бутеновая смесь до 530°. Оба газа смешиваются и в течение около 0,2 сек. пропускаются над катализатором, имеющ,им форму таблеток и находяш,нмся в трубках из легированной стали. Температура дегидрирования на входе в печь около 670°. Разница между температурами на входе и выходе равна примерно 25°, что объясняется эндотермическим характером реакции. В некоторых установках, чтобы обеспечить возможность непрерывного ведения процесса, пмеется два реактора, из которых в одном все время происходит регенерация. Последнюю проводят нрекраш ая подачу бутена в реактор. Перегретый водяной пар реагирует с высокоактивным коксом с образованием водяного газа. [c.86]

    Процесс Истмана основан на том же принципе, что и рассмотренный выше метод высокотемпературного пиролиза. Пропан иа натурального газа или газолин, предварительно подогретые до 600°, смешиваются в камерной печи с также подогретым до 600° кислородом или воздухбм и сгорают. Количество кислорода составляет в обоих случаях около 95% от стехиометри-ческого. Вычисленная температура пламени лежит около 2000°. [c.98]

    Способы работы также часто различны. Как и в каталитическом крекинге, здесь различают три вида установок установки с неподвижным катализатором, в которых контакт находится в виде таблеток, установки с подвижным катализатором, в которых контакт, в большинстве случаев имеюш,ий форму шариков, непрерывно циркулирует через установку и реактивируется (регенерируется) в особой печи и, наконец, установки, работающие по принципу псевдоожиженного слоя, в которых катализатор находится в пылевидном состоянии и поддерживается парами бензина в постоянном завихренном движении. Так как процесс эндотермический, то часть необходимого тепла подводится за счет предварительного подогрева бензиновых паров циркулирующим водородом, а другая часть катализатором, который в процессе регенерации (выжигание кокса в струе воздуха) поглощает много тепла. [c.105]

    При окисленин пропана или бутана чистым кислородом содержание последнего в смеси, должно составлять 3—6%. Температура предварительного подогрева 350— [c.153]

    Нефтяной парафин должен предварительно очень хорошо очищаться, чтобы удалить содержащиеся и нем природные ингибиторы окис гения, которые могут или полностью затормозить процесс окисления илн спльно его замедлить. Такими ингибиторами являются в первую очередь серусо-держащие соединения и фенолы, которые можно удалить, например, очисткой разбавленной азотной кислотой или безводным хлористым алюминием. [c.162]

    Оксивоск представляет собой высокомолекулярный нолигликоль молекулярного веса около 4000. Внешне он похож на воск, если он применяется в фармацевтической промышленности, то предварительно обрабатывается 30%-ной перекисью водорода. [c.191]

    Образование эфира можно значительно снизить, если предварительно отделить диэтилсульфат. Этого можно достигнуть разбавлением водой, выходящей из абсорбционной колонны смеси, состоящей из концентрированной серной кислоты, моноэтилсульфата и диэтилсульфата. Последний выделяется в нижиий слой и затем отделыю нодвергается гидролизу 30%-ной серной кислотой. После омыления оба слоя соединяются для дальнейшей переработки. Эфира в этом случае образуется пе более 2%. [c.200]

    Например, алкилирование в присутствии ила-виковой кислоты, как катализатора, производится следующим образом (рис. 144) [821. В котел загружают 107С кг бензола, предварительно охлажденного до -1-10 , 547 кг безводной плавиковой кислоты и 1472 кг пропенполимера, смесь энергично перемешивают. Реакция заканчивается через 3—4 часа, после чего плавиковая кислота отгоняется прп 20°, а не вошедший в реакцию бензол при 80". Из смеси отгоняется 200 кг плавиковой кислоты и 305 КЗ бензола. Остаток от перегонки в течение получаса перемешивают с 10 кг кальцинированпой соды, фильтруют через фильтрпресс и в таком виде он поступает на дальнейшую переработку. Алкилирование может производиться также непрерывным способом. [c.234]


Смотреть страницы где упоминается термин Предварительное: [c.71]    [c.100]    [c.130]    [c.26]    [c.67]    [c.13]    [c.29]    [c.32]    [c.96]    [c.153]    [c.157]    [c.169]    [c.170]    [c.205]   
Технология пластических масс в изделия (1966) -- [ c.280 ]




ПОИСК







© 2025 chem21.info Реклама на сайте