Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Висмут нитрид

    Положительный градиент механической прочности можно создать нанесением на поверхности различных смазочных пленок. Твердые смазки как раз и обладают свойством создавать положительный градиент механической прочности при малом значении т. В качестве твердых смазок в настоящее время используются слоистые твердые смазки (графит, дисульфид молибдена, нитрид бора, дисульфид вольфрама и т. п.), тонкие металлические пленки (олово, свинец, висмут и т. п.), композиционные смазки с полимерными связующими, полимерные и комбинированные смазки. [c.204]


    Введение в жидкие висмут, свинец или ртуть небольших (обычно около 0,05% по массе) количеств ингибиторов — циркония или титана — суш,ественно (иногда в сотни раз) снижает скорость растворения в них железа и стали, что обусловлено образованием на поверхности защитных пленок нитридов и карбидов циркония и титана, затрудняющих выход атомов твердого металла в жидко-металлический раствор. Кроме того, присутствие этих ингибиторов замедляет кристаллизацию растворенного металла в условиях термического переноса массы и увеличивает пресыщение раствора в холодной зоне. [c.145]

    Применение в энергетике. Бор (изотоп 5°В) интенсивно поглощает медленные нейтроны, поэтому используется для изготовления регулирующих стержней атомных реакторов и защитных устройств от нейтронного облучения. Кристаллический бор обладает полупроводниковыми свойствами и используется в полупроводниковой технике (его проводимость при нагревании до 600 С возрастает в 10 раз). Исключительной химической стойкостью, твердостью, жаростойкостью обладают многие соединения бора с металлами побочных подгрупп. Алюминий и его сплавы применяют в энергетике в качестве конструкционного и электротехнического материала. Галлий применяют в полупроводниковой технике, так как его соединения с мышьяком, сурьмой, висмутом, а также аналогичные соединения индия обладают полупроводниковыми свойствами. Галлий используют при изготовлении высокотемпературных термометров с кварцевыми капиллярами (измерение температуры до 1500° С). Галлий может быть использован как хороший теплоноситель в системах охлаждения ядерных реакторов, лазерных устройств. Индий обладает повышенной отражательной способностью и используется для изготовления рефлекторов и прожекторов. Способность таллия при температуре ниже 73 К становиться сверхпроводником делает его перспективным материалом в энергетике. Представляют практический интерес многие соединения этих металлов и соединения бора, например нитрид бора ВЫ—боразон, отличающийся исключительной твердостью и химической инертностью. [c.230]

    Нитрат бария 135 бериллия 93 висмута 397 галлия 180 индия 187 иттрия 614 калия 52 кальция 114 лантана 621 лития 14 магния 103 меди 556 натрия 31 никеля 864 палладия 884 ртути 596—7 рубидия 71 свинца 264 серебра 566 скандия 607 стронция 125 таллия 196—7 тория 671 уранила 685 цезия 83 церия 629—30 Нитрид бора 153 иода 535 лития 20 магния 106 серы 456 фосфора 356 хлора 506 Нитрит 303—5 Нитрит, гипо- 301 Нобелий 700 [c.477]


    В качестве солеподобных соединений, в которых мышьяк, сурьма и висмут проявляют степень окисления —3, можно рассматривать арсениды, стибиды (антимониды) и висмутиды s-элементов I и II групп (КзЭ, СадЭа, М зЭ,2 и др.). В большинстве же других случаев при взаимодействии металлов с мышьяком, сурьмой и висмутом образуются соединения металлического типа. Стибиды и арсениды / -элементов и элементов подгруппы цинка — полупроводники. В ряду однотипных нитридов, фосфидов, арсенидов, стибидов и висмутидов ширина запрещенной зоны уменьшается, что свидетельствует об увеличении доли нелокализованной связи. Например  [c.381]

    Как уже указывалось, в среде жидкого аммнака также могут быть получены весьма своеобразные соединения. Некоторые из них можно получить только в жидком аммиаке наиример, единственным способом получения нитрида ртути HgзN2 является взаимодействие соли ртути с амидами щелочных металлов в жидком аммиаке (см. стр. 238). Аналогично получают нитриды висмута и таллия (Т1зЫ и В1Ы). Иными способами приготовить эти соединения не удается. Вот несколько примеров аммонолиза, приводящих к образованию весьма своеобразных продуктов  [c.257]

    Как уже указывалось, весьма своеобразные соединения могут быть получены в среде жидкого аммиака, причем некоторые из них образуются только в жидком аммиаке. Например, единственным спосс м получения нитрида ртути HgзN2 является взаимодействие соли ртути с амидами щелочных металлов в жидком аммиаке. Аналогично получают нитриды висмута BiN и таллия TlзN. Другими способами приготовить эти соединения не удается. [c.305]

    Из табл. 27 следует, что ионизационные потенциалы атомов элементов V группы выше, чем IV группы. Это подтверждает существующую закономерность усиления неметаллических свойств в периодах слева направо. Азот и фосфор — типичные неметаллы, у мышьяка преобладают неметаллические свойства, у сурьмы в равной мере выражены металлические и неметаллические свойства, у висмута преобладают металлические свойства. При обычных условиях азот инертен, так как энергия тройной связи в его молекуле N = N велика (941,4 кДж/моль). При высоких температурах азот вступает в реакцию со многими металлами и неметаллами, образуя нитриды. Соединения азота со степенью окисления +5 являются сильными окислителями, например HNOa и ее соли. [c.232]

    Мышьяк, сурьма и висмут с металлами образуют непрочные соединения, аналогичные нитридам при обработке арсенидов, антимонидов и висмутидов растворами кислот можно получить гидриды— неустойчивые, очень ядовитые газообразные вещества АзНз (арсин), 5ЬНз (стибин) и BiHз (висмутин). Устойчивость газообразных гидридов снижается с ростом атомной массы висмутин наименее стоек и разлагается особенно легко. [c.184]

    Исключительно важны пниктогепиды элементов подгруппы гал-ЛИЯ — самые важные полупроводниковые соединения типа Висмут такие соединения не образует. Желтый нитрид галлия получается при пропускании аммиака над нагретым до 1000 С галлием, а также в результате разложения (МН4)з[ОаР,.,1 в атмосфере аммиака. Нитрид иидия получен аналогичным образом из ( Н,)з[1пР,)1 при более 1П13кой температуре. Остальные пниктогепиды получают прямым синтезом из компонентов. Их температуры плавления ( С) приведены ниже (для полноты картины включены и пниктогениды алюминия)  [c.162]

    Соединения элементов подгруппы германия с пниктогеиами известны далеко не для всех элементов. Свинец вообще не образует соединений ни с одним элементом УА-группы. С другой стороны, сурьма и висмут не образуют соединений ни с одним из элементов подгруппы германия. Устойчивый нитрид известен лишь для германия, причем его получают не непосредственным взаимодействием компонентов, а путем нагревания германия в токе аммиака. При этом в качестве промежуточных продуктов образуются имиды германия, например Ое(МН)2, ОеКН. Реакцию взаимодействия Ое с ЫНз можно представить в виде [c.226]

    Соединения с элементами V группы. Со всеми элементами главной подгруппы V группы периодической системы, кроме висмута, галлий образует соединения состава 1 1, которые обладают полупроводниковыми свойствами (табл. 29). При переходе от нитрида к антимониду закономерно нарастают металлические свойства, что проявляется в уменьшении ширины запрещенной зоны. Это сопровождается понижением температуры плавления. Указанные соединения кристаллизуются в кубической решетке типа сфалерита, только нитрид образует гексагональную решетку типа другой разновидности сульфида цинка — вюртцита. [c.239]

    Многие ингибиторы непосредственно влияют на катодный и анодный процессы. Катодные ингибиторы коррозии повышают перенапряжение выделения водорода в растворах кислот (соли и окислы мышьяка, висмута, желатин, агар-агар, декстрин и многие органические вещества), а в ряде случаев уменьшают наводороживание металла (например, промышленные ингибиторы 4М, ПБ-5идр.). Анодные ингибиторы в основном уменьшают скорость анодного растворения вследствие пассивации поверхности (окислители — кислород, нитриды, хроматы). [c.32]


    Недеструктивный активационный метод применяется для определения ЗЬ в алюминии [841, 1688] и его сплавах [945], нитриде алюминия [421], аскорбиновой кислоте [1630], асфальте [982], висмуте [830, 1204, 1239] и его сплавах с сурьмой [48, 313], воздушной пыли [884, 13131, галените [21], германии [633, 1384, 1385], горных породах [230, 427, 541, 949, 1061, 1289], графите [106, 1207], железе, чугуне и стали [135, 884, 1128, 1129, 1556, 1652], индии [12711, карбиде кремния [468], кремнии [212, 762, 932, 950, 989, 1217, 1361], тетрахлориде кремния [1462] и эпитаксиальных слоях кремния [580], меди [1002], морских [642, 1427] и природных водах [4, 1040], нефти и нефтепродуктах [991, 1517], олове [1305], поли-фенолах [983], почвах [1528], растительных материалах [1316, 1528], рудах [466, 1270], свинце [835 -837, 1205, 1505, 1506], стандартных образцах металлов [1316], теллуре [5], титане [68], хроматографической бумаге [1409], циркалое [1099], эммитерных сплавах [625], трифенилах [8771 и фториде лития [331]. Благодаря высокой чувствительности и вследствие того, что для анализа, как правило, требуется небольшое количество анализируемого материала, эти методы часто используются в криминалистической практике [884, 892, 12961. Имеются указания [965] аб использова- [c.74]

    Активационные методы с выделениед и радиохимической очисткой образовавшихся изотопов ЗЬ используются для ее определения в алюминии [639—641, 912, 1235, 1247, 1376, 848] и трехокиси алюминия [639], боре и нитриде бора [426], бериллии [523], ванадии и пятиокиси ванадия [145], висмуте [1204, 1659, 1660], вольфраме [144], галлии [1375] и арсениде галлия [640, 824, 825, 831, 1375], германии [610, 639, 640], горных породах [74, 449, 1276, 1554], железе, стали и чугуне [987, 1033, 1113, ИЗО, 1280, 1590, 1653], железных метеоритах [1539], золоте [1676], индии [828, 829] и арсениде индия [115], каменных метеоритах [1136, 1234, 1236, 1515], кремнии [38, 39,275,282,455,639, 640, 861, 1035, 1144, 1355, 1473, 1492, 1540, 1687], двуокиси кремния и кварце [282—285, 487, 639, 640], карбиде кремния [38, 276, 639, 6401, [c.75]

    С мышьяком и сурьмой галлий также образует соединения состава 1 1 [1088]. Антимонид галлия легко получается сплавлением исходных элементов. Для получения арсенида такой синтез представляет серьезные трудности, так как при температуре плавления арсенида давление пара мышьяка очень велико. Еще в большей степени это относится к фосфиду. Поэтому последний лучше получать косвенным путем, например действием на металл фосфористого водорода при 900—950° С [445]. Прямой синтез GaP может быть осуществлен в расплаве висмута, используемого в качестве индифферентного растворителя [496]. GaN, GaP, GaAs, GaSb — устойчивы по отношению к кислороду и влаге воздуха и лишь с трудом разлагаются кислотами. От нитрида к антимониду наблюдается постепенное нарастание металлических свойств. Все эти соединения являются полупроводниками. [c.23]

    Известны три нитрида урана (UN, U2N3, UN2), получаемые при взаимодействии урана или его гидрида с азотом или аммиаком. Самым стабильным из них является UN (ДЯ эз -286 кДж/моль). К фазам внедрения относятся и тугоплавкие карбиды иС (2350°С), U2 3 (1775°С) и U 2 (2475°С), получаемые прямым синтезом. При нагревании уран взаимодействует со всеми пниктогенами (в том числе и с висмутом). Типичными составами являются UH, изП4 и иПз, характерные для большинства переходных -металлов. Аналогичные закономерности наблюдаются и при взаимодействии урана с кремнием и бором, что сближает его с элементами VIB-группы. [c.509]

    Устойчивость водородных соединений элементов VA группы уменьшается от азота к висмуту. При взаимодействии с кислотами аммиак NH3 образует соли аммония, а фосфин РНз — соли фосфония. Атомы водорода в NH3, РНз, АзНз и ЗЬНз могут замещаться на атомы активных металлов такое замещение легче протекает у стибнна 5ЬНз- Продуктами этих реакций являются соответствующие нитриды, фосфиды, арсеннды и стибиды. [c.339]

    С и выдерживая 3—4 ч для полного превращения феррита в аустенит. Затем чугун охлаждают до т-ры 700° С шш ниже, чтобы из аустенита образовалась ферритоцементитная смесь (перлит). В процессе выдержки (3—4 ч) при т-ре 700° С цементитные пластинки перлита округляются, в утоненных местах разобщаются, превращаясь в цепочку округлых зерен, окруженных ферритом. Такая специфичность структуры обусловливает высокую прочность и пластичность К. ч. с зернистым перлитом. Отжиг чугуна осуществляют в печах различных конструкций на твердом, жидком и газообразном топливе, а также в печах с электр. нагревом. Отливки из белого чугуна эй-гружают в печи отжига в коробках с балластом (песком) во избежание коробления и поломок или без балласта, когда отжигают мелкие детали, или укладывают отливки в стопки на поддоне печи. Сокращение цикла отжига достигается улучшением работы и конструкции печей, совершенствованием технологии литья и самого процесса отжига. Интенсификации процесса графитизации при отжиге способствует модифицирование чугуна при разливке его в формы. В жидкий чугун вводят небольшое количество (0,1—0,2% от массы жидкого металла) алюминия, бора, висмута, кремния, теллура и др. элементов раздельно или в различных сочетаниях. Под влиянием модификаторов при затвердевании чугуна образуются мелкие первичные кристаллы аустенита и цементита, что способствует более быстрому завершению первой стадии отжига, поскольку мелкие зерна цементита быстрее распадаются, чем крупные. Кроме того, модификаторы уменьшают стабильность цементита и нейтрализуют влияние стабилизирующих цементит примесей. Длительность отжига сокращается до 12 ч, если под струю выливаемого в ковш металла вводят модификатор (0,1—0,3% от массы жидкого металла), состоящий из смеси порошков ферросилиция Си 75 (60%) и технической борной кислоты (40%). Кремний связывает азот в нитриды, не допуская перехода [c.603]

    Кроме железа, марганца, молибдена, вольфрама и церия, обнаруживающих каталитическую активность в процессе синтеза аммиака, были запатентованы металлы и различные их комбинации и соединения, активность которых минимальна или почти равна нулю. Например, в качестве катализаторов синтеза аммиака запатентованы щелочные и ш,елочноземельные металлы, их нитриды, гидриды и карбиды, а также никель, кобальт, платина, палладий, иридий, карбиды щелочноземельных металлов, алюминий, хром, медь ц даже цинк и висмут, хотя они являются веществами, отрицательно влияющими на активность катал из аторов °. [c.541]

    Из неорганических реактивов под действием воды разлагаются сульфиды, селениды и нитриды щелочных и щелочноземельных металлов, соли слабых кислот и слабых основных или амфотерных окислов, галогениды неметаллов и т. п. Например, в присутствии воды висмут(П1) азотнокислый переходит в основную соль германий четыреххлористый, разлагаясь, образует окись калин циановокислый, выделяя аммиак, превращается в КНСО3 перекись магния, выделяя кислород, переходит в окись олово(П) сернокислое разлагается с образованием основного сульфата сурь.ма(П1) бромистая гидролизуется с образованием SbjOs, НВг и НВгО. К неорганическим реактивам, разлагающимся под действием воды, относятся также алюминий, калий и натрий селенистые алюминий и барий сернистые алюминий ванадиевокислый калий и натрий алюминиевокислые натрий-титанил сернокислый гафний, кремний, олово и селен четыреххлористые цинк бромистый трех- и пятихлористый фосфор трех- и пятибромистый фосфор медь цианистая олово(IV) хромовокислое цианур хлористый сера однохлористая тионил хлористый и др. [c.72]

    Очень различны свойства первого и последнего элементов подгруппы. Так, нитрид хлора КСЦ крайне неустойчив, а хлорид висмута (П1) В1С1з — инертен. [c.222]

    Закономерности, указанные для бинарных систем элементов главной подгруппы IV группы с кремнием, остаются в силе и для систем, рассматриваемых в этом разделе. Однако связь кремния с азотом значительно слабее, чем кремния с углеродом, что проявляется, например, в ее разрыве при воздействии воды на азотсодержащие кремнийорганические соединения и диссоциации нитрида кремния 81зМ4 при значительно более низкой температуре (1900°), чем карборунда. Еще менее стойка связь кремния и фосфора. Вследствие значительного различия в атомных радиусах и более легкого присоединения электронов мышьяк образует с кремнием не твердые растворы, как германий, а химические соединения. Сурьма и висмут по отношению к кремнию совершенно аналогичны соответственно олову и свинцу. [c.83]


Смотреть страницы где упоминается термин Висмут нитрид: [c.287]    [c.200]    [c.425]    [c.189]    [c.151]    [c.336]    [c.342]    [c.125]    [c.318]    [c.40]    [c.336]    [c.342]    [c.764]    [c.795]    [c.835]    [c.80]    [c.182]    [c.230]    [c.678]    [c.713]    [c.515]    [c.209]   
Общая и неорганическая химия (1981) -- [ c.287 ]

Основы общей химии Т 1 (1965) -- [ c.466 ]

Основы общей химии том №1 (1965) -- [ c.466 ]




ПОИСК





Смотрите так же термины и статьи:

Нитриды

Нитриды мышьяка, сурьмы и висмута



© 2024 chem21.info Реклама на сайте