Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иттербий свойства

    С другой стороны, откладывает отпечаток на свойства элементов наличие электрона в электронной оболочке гадолиния (4/ 5d 6s ) и лютеция (4/ 5d 6s ). Это сближает их по ряду свойств друг с другом и с лантаном (4/ 5il 6s ). Так, например, у лантана, гадолиния и лютеция близкие и притом повышенные в ряду лантаноидов значения теплот (энтальпий) атомизации (возгонки), в то время как у европия и иттербия тоже близкие, но минимальные. На кривой зависимости теплоты атоми- [c.322]


    Гидроксиды лантаноидов могут быть получены либо взаимодействием оксидов с водой, либо обменными реакциями солей лантаноидов с растворами щелочей они обладают ничтожно малой растворимостью Б воде, произведение растворимости их при 25° С колеблется в пределах от 1,5-10 для Се(ОН)з до 2,5 10" для Ьи(0Н)з. Основной характер гидроксидов ослабляется в этом же направлении вместе с уменьшением радиуса иона. В последнее время были обнаружены слабо выраженные амфотерные свойства у гидроксидов лютеция и иттербия, которые растворимы в растворах сильных щелочей с образованием гидроксокомплексов  [c.67]

    Если проследить за изменением величин кажущихся радиусов атомов лантаноидов (рис. 48), то от первого элемента — церия к последнему — лютецию, исключая аномалию у европия и иттербия, они постепенно уменьшаются это явление получило название лантаноидного сжатия, или контракции. Последняя наблюдается и для ионов лантаноидов (рис. Н7). Лантаноидная контракция имеет большое значение для обсуждения свойств элементов, стоящих в VI периоде после 71 элемента. [c.276]

    В химии редкоземельных элементов наиболее ярко проявляется внутренняя периодичность, особенно для производных в характеристической степени окисления. Объяснение этому факту было дано в гл. I, 5. Для иллюстрации внутренней периодичности в табл. 5 приведены цвет гидратированных ионов Э , стандартные энергии Гиббса образования трифторидов и проявляемые степени окисления. Наблюдается удивительная аналогия в свойствах элементов, находящихся друг под другом. В каждой семерке, составляющей внутренний период, ионизационные потенциалы третьего порядка монотонно растут (см. табл. 3) с уменьшением атомных радиусов в результате лантаноидной контракции. Но начало нового внутреннего периода (переход от Ей к Gd) сопровождается уменьшением третьего ионизационного потенциала на 4 В, У европия впервые в первой семерке достигается устойчивая наполовину заполненная 4/ -оболочка. У гадолиния же при той же устойчивой 4/,-оболочке появляется один электрон на Sii-оболочке, который намного легче удаляется, потому что этот электрон делает стабильную 5 /°-оболочку неустойчивой. Для элементов, следующих за Gd, вновь наблюдается монотонное возрастание третьего ионизационного потенциала вследствие лантаноидного сжатия. Благодаря стабильности указанной 4/ -оболочки европий часто функционирует в степени окисления 4-2 за счет бз -электронов, а один из семи неспаренных электронов на 4/ -оболочке участвует в образовании связей в более жестких условиях. Для его аналога иттербия картина схожая, только в качестве устойчивой выступает уже полностью заселенная 4/ -обо-лочка. В случае самария и тулия, находящихся левее указанных [c.172]


    Физические и химические свойства иттрия и лантаноидов. РЗЭ имеют серебристо-белый цвет (неодим и празеодим с желтоватым оттенком), в порошкообразном состоянии — от серого до черного. Большая их часть кристаллизуется в плотной гексагональной решетке, за исключением церия, иттербия, самария и европия (табл. 15). Изменение атомных объемов иллюстрируется рис. 16. Для сопоставления верхней и нижней пунктирными линиями показано изменение атомных объемов двух- и четырехвалентных элементов, соседних с лантаноидами в периодической системе. Гексагональная плотная упаковка при достаточно высокой температуре превращается в кубическую плотную с тем же координационным числом. Всем им присущ полиморфизм. В химически чистом виде они имеют высокую электропроводность. Пластичны, имеют твердость порядка 20—30 единиц по Бринеллю. Твердость их зависит от чистоты, термической обработки и обычно воз- [c.51]

    Оксиды скандия и РЗЭ — бесцветные (большинство), тугоплавкие и труднорастворимые в воде вещества, хотя интенсивно (с выделением теплоты) взаимодействуют с ней с образованием характеристических гидроксидов Э(ОН)з. Получают оксиды прокаливанием соответствующих гидроксидов, нитратов и карбонатов. Гидроксиды получают действием растворов щелочей на растворимые соли скандия и РЗЭ. Гидроксиды также труднорастворимы в воде. В подгруппе скандия растворимость гидроксидов растет 8с(ОН)з — рПР 28, У(ОН)з — рПР 22,8, Га(ОН)з — рПР 18,9. А все гидроксиды лантаноидов характеризуются примерно такой же растворимостью, как (ОН)з (порядок величины рПР 22—23). Гидроксид скандия — амфолит с более сильно выраженными основными свойствами, а гидроксиды РЗЭ представляют собой довольно сильные основания. В ряду лантаноидов основная сила гидроксидов постепенно уменьшается с уменьшением радиусов Э в результате лантаноидной контракции. С уменьшением ионных радиусов растет их ионный потенциал и связь с кислородом становится более прочной. Поэтому гидроксиды иттербия и лютеция проявляют слабую амфотерность и примыкают в этом отношении к 8с(ОН)з. [c.350]

    Все РЗЭ в нормальных условиях имеют степень окисления + 3, однако в особых условиях некоторые РЗЭ способны проявлять другую, аномальную степень окисления + 4 для церия, празеодима и тербия +2 для самария, европия и иттербия. В состоянии аномальной степени окисления элементы приобретают химические свойства, [c.191]

    Обширная группа элементов в шестом периоде периодической системы Менделеева, известная под названием редких земель нли лантаноидов, состоит из 15 элементов лантана (Ьа), церия (Се), празеодима (Рг), неодима (N(1), прометия (Рт) самария (8т), европия (Ей), гадолиния (0(1), тербия (ТЬ), диспрозия (Ьу), гольмия (Но), эрбия (Ег), тулия (Ти), иттербия (УЬ) и лютеция (Ьи). Этим элементам в природе сопутствует иттрий (V), который чрезвычайно с ними сходен по химическим свойствам. Поэтому он обычно рассматривается совместно с этой группой элементов. [c.7]

    В состоянии аномальной валентности элементы приобретают химические свойства, резко отличающиеся от свойств остальных элементов группы, и благодаря этому могут быть от них отделены. Так, четырехвалентный церий по свойствам напоминает элементы подгруппы титана, а двухвалентные самарий, европий и иттербий напоминают щелочноземельные металлы. [c.15]

    Все нитриды рзэ кристаллизуются в правильной системе (см. приложение 16), причем аномалия в изменении параметра решетки наблюдается только у церия. К сожалению, физические свойства этих соединений, которые могли бы характеризовать тип связи, почти совершенно не изучены. В термическом отношении нитриды довольно устойчивы и обладают высокими температурами плавления (для скандия и иттрия они находятся в пределах 2600—2700° С [681, 1213]). Из всех соединений летучесть проявляет, видимо, только иттербий его нитрид уже при 1400°С полностью перегоняется [889]. Остальные имеют незначительные упругости пара даже при более высоких температурах нитрид лантана при 900°С в высоком вакууме и нитрид самария при 1600° С не проявляют летучести, а нитрид иттрия имеет упругость пара 10 и > 10 жж рт. ст. соответственно при 1230 и 1730°С [889, 1670, 2076]. [c.39]

    Все карбиды рзэ имеют неодинаковые и резко различающиеся летучести. Так, карбиды самария, европия и иттербия уже при 1200°С начинают испаряться, а при 1400°С в вакууме их можно количественно отогнать из суммы рзэ. Вопрос о том, в какой форме происходит дистиллирование, пока не ясен. На этом свойстве основан сухой метод выделения трех элементов из смеси с остальными [597, 1944]. [c.41]

    Практическое применение этого элемента ограничено некоторыми специальными сплавами, главным образом на алюминиевой основе. Кроме того, смесь окислов иттербия и иттрия добавляют в огнеупоры на основе двуокиси циркония. Такая добавка стабилизирует свойства огнеупоров. [c.157]

    При высоких и сверхвысоких давлениях изменяются физические свойства веществ. Так, в ряде случаев вещества, которые при обычных давлениях являются изоляторами (например, сера), при сверхвысоком давлении становятся полупроводниками. Полупроводники же при 2- 10 —5- 10 Па могут переходить в металлическое состояние. Подобные переходь[ изучены у теллура, иода, фосфора, ряда соединений. Расчеты показывают, что дальнейшее повышение давления металлизует все вещества. Интересные превращения претерпевает иттербий (УЬ), При давлении до 2- 10 Па иттербий — металл, при 2-Ю —4-10 Па — полупроводник, выше 4-10 Па— нова металл. [c.124]


    Гидроксиды. Гидроксиды лантаноидов состава Ме(ОН)д — слизистые аморфные осадки, которые при нагревании, теряя воду, раскаляются (теплота кристаллизации) с образованием кристаллических модификаций. Све-жеосажденные гидроксиды гигроскопичны и поглощают из воздуха двуокись углерода. Основной характер гидроксидов и степень диссоциации при увеличении ионных радиусов растут. Гидроксиды лантаноидов сходны с гидроксидами щелочноземельных элементов, но менее растворимы в воде. Наиболее сильным основанием среди них является гидроксид церия (III), наиболее слабым Ьи(ОН)з- Недавно было установлено, что оксиды иттербия и лютеция обладают слабо выраженными амфотерными свойствами (Иванов-Эмин). Гидроксиды их также амфотерны. Различием в растворимости гидроксидов пользуются при дробном разделении элементов лантаноидов. [c.281]

    Для исследования химических свойств этого элемента используют два наиболее доступных изотопа N0 (7 1/2=3 мин) и Ыо (Т 1/2=1,5 ч). На следовых количествах элемента установлено, что наиболее характерной его степенью окисления является +2 и в этом состоянии он напоминает щелочно-земельные металлы. В частности, он соосаждается вместе с Вар2 (и НаРг). В состоянии окисления +3 он переходит под действием сильных окислителей [Се (+4), ВгО,7 и др.] Эти данные говорят о том, что нобелий является аналогом иттербия. [c.449]

    Гидроксиды лантаноидов малорастворимы в воде, проявляют основные свойства, несколько ослабеваюш,ие от церия к лютецию. Гидроксиды иттербия и лютеция амфотерны, растворяются в щелочах, образуя тетрагидроксокомплексы, например  [c.448]

    Т превышает П00°, то у эрбия Д лишь немногим более 100°, а у лютеция около 200°. Вместе с тем у иттербия 700°, а у европия АТ, составляет около 1800° — максимальная величина среди лантаноидов. От-т 20 W iO 50W70 можно заключить, что свойства простых жидкостей и, в частности, их устойчивость Рис. 46. Фазовая д иаг- весьма существенно зависят от деталей строе-рамма церия [87] ния электронных оболочек их атомов. [c.186]

    Дело даже не в том, что Д. И. Менделеев опубликовал свою таблицу несколько раньше Л. Мейера. Для Л. Мейера таблица была удобной формой систематики элементов, за которой он не смог увидеть всеобщего закона Природы. Б 1870 г. Л. Мейер писал, что целый ряд элементов по своим свойствам не укладывается в системы, если нм приписать общепри)1Ятые в то время- атомные веса. Указывая на это, Л. Мейер делал следующее заключение Было бы преждевременно принимать изменения до сих пор принятых атомных весов на такой ненадежной основе. Вообще в настоящее время на подобного рода аргументы нельзя ни слишком сильно полагаться, ни ожидать от них столь же определенного решения вопроса, как от определения теплоемкости или плотности пара . В этой цитате со всей очевидностью проявилось отношение Л. Мейера к периодическому закону. Д. И. Менделеев не только исправил атомные веса бериллия, индия, церия, лантана, иттербия, эрбия, тория, урана, но и с большой точностью предсказал свойства еще не открытых эле< ментов — галлия, скандия, германия. В этом и заключается триумф периодического закона Д. И. Менделеева. [c.82]

    Физические и химические свойства. Скандий и все РЗЭ в виде простых веществ — серебристо-белые металлы, тускнеют во влажном воздухе. Скандий обладает диморфизмом ниже 1334°С устойчива ГПУ-структура, а выше этой Ч емпературы — ОЦК-решетка. Все РЗЭ в основном имеют структуру ГПУ, за исключением европия (ОЦК), иттербия (ГЦК) и самария, который кристаллизуется в ромбоэдрической структуре. Однако последнюю можно рассматривать как слегка искаженную ГПУ. Металлы цериевой группы пластичны, сравнительно мягки, причем их твердость возрастает с увеличением атомного номера. Скандий и металлы иттриевой группы несколько тверже исключением является довольно ковкий иттербий. Он же имеет аномально высокую электрическую проводимость она в три раза больше, чем у других РЗЭ, которые по этому пара- [c.347]

    В химии редкоземельных элементов наиболее ярко проявляется внутренняя периодичность, особенно для производных в характеристической степени окисления. Объяснение этому факту было дано в 5 гл. X. Для иллюстрации внутренней периодичности в табл. 25 приведены цвет гидратированных ионов Э , стандартные энергии Гиббса образования трифторидов и проявляемые степени окисления. Наблюдается удивительная аналогия в свойствах элементов, находящихся друг под другом. В каждой семерке, составляющей внутренний период, ионизационные потенциалы третьего порядка монотонно растут (см. табл. 24) с уменьшением атомных радиусов вследствие лантаноидной контракции. Но начало нового внутреннего периода (переход от Ей к Сс1) сопровождается уменьшением третьего ионизационного потенциала на 4 В. У европия впервые в первой семерке достигается устойчивая наполовину заполненная 4/-оболочка. У гадолиния же при той же устойчивой 4/-оболочке появляется один электрон на 5 -оболочке, который намного легче удаляется, потому что этот электрон делает стабильную 5 °-оболочку неустойчивой. Для элементов, следующих за 0(1, вновь наблюдается монотонное возрастание третьего ионизационного потенциала вследствие лантаноидного сжатия. Вследствие стабильности 4/-оболочки европий часто функционирует в степени окисления +2 за счет бя -электронов, а один из семи неспаренных электронов на 4/-о6олочке участвует в образовании связей в более жестких условиях. Для его аналога иттербия картина схожая, только в качестве устойчивой выступает уже полностью заселенная 4/4-оболочка. В случае самария и тулия, находящихся левее указанных выше Ец и УЬ, 4/- и 4/ -оболочки близки к достижению стабильного состояния, а потому в основном проявляют характеристические степени окисления. Но эти же элементы в более мягких условиях могут быть в степени окисления +2 за счет бв -электронов при квазистабильных 4/- и 4/3-о6олочках. Для элементов начала внутренних периодов — Ьа и 0(1 — наблюдается только степень окисления - -3 вследствие устойчивости 4/ - и 4/-оболочек, полностью вакантной или наполовину заполненной. А электронами, участвующими в химическом взаимодействии, у них являются 5должны быть стабильны, но для лантана и лантаноидов электроны на них являются внешними, а потому слабее связанными с ядром и вследствие этого наиболее подвижными. У [c.351]

    В области рН = 3—5, где интенсивность флуоресценции комплексонов невелика, взаимодействие соединений 2.3.94 и 2.3 95 с рядом катионов (Ве +, А13+, 8с +, ОаЗ+, некоторыми лантаноидами) приводит к значительному усилению флуоресценции. Наибольший интерес представляет изменение интенсивности флуоресценции соединения 2 3 94 в присутствии иттербия и лютеция. При добавлении раствора динатриевой соли этилендиаминтетрауксусной кислоты комплексы лютеция и иттербия разрушаются, что сопровождается появлением зеленой флуорес-денции свободного лиганда Для остальных лантаноидов изменение флуоресценции незначительно Это свойство соединения 2 3 94 позволило предложить его в качестве металлфлуорес-центного индикатора для комплексонометрического определения лютеция и иттербия с относительной ошибкой определения 0,3% [538]. [c.291]

    Редкоземельные элементы открыты в 1794 г. академиком Петербургской академии наук И. Я. Гадолином в минерале иттербите, который в честь ученого был переименован в гадолинит. Для РЗЭ характерно исключительное сходство основных химических и физических свойств (кроме свойств их ядер), в связи с чем в Периодической системе Д. И. Менделеева они помещены в одну клетку, которая ранее была отведена лантану. [c.190]

    РЗЭ делят на две подгруппы — цериевую, в которую входят лантан, церий, празеодим, неодим, прометий, самарий и европий и иттри-евую, которая включает иттрий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий, лютеций (а также скандий). Свойства элементов этих подгрупп несколько различны. [c.190]

    Понятия редкоземельные элементы и лантаноиды часто путают. Между тем это не одно и то же. Лантаноиды — это элементы, заряды ядер которых имеют промежуточные значения между зарядами ядер лантана и гафния. К ним относятся 14 элементов церий, празеодим, неодим, прометий, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий, лютеций. В число редкоземельных элемеитов входят помимо перечисленных еще три элемента скандий, иттрий и лантан. Это объединение 17 элементов под оЗщим названием удобно потому, что скандий, нттрий н лантаи очень похожи по своим химическим свойствам на лантаноиды. Поэтому н в природе все 17 элемеитов обычно ьстречаются в д l x и тех же рудах. [c.121]

    Трехвалентные элементы скавдий, иттрий, лаятан, гадолиний, иттербий и лютеций являются гомологами алюминия. Их окиси и соли — белого цвета. S jOa обладает сла<быми основными свойствами ЬазОз обладает почти такими же основными свойствами, как и СаО. [c.607]

    По своим основным свойствам этот элемент занимает место. между эрбием и иттербие.и ои был получен путем дробного осаждения бромата. Соли окрашены в зеленовато-синий цвет и дают полосы поглощения при X = 702, 684 и 464 тн . [c.611]

    Спектры люминесценции допированного BI4Ge30i2 изучены в [340]. Показано, что ионы редкоземельных элементов действуют как доминирующие центры рекомбинации и определяют спектр эмиссии. Это объясняют прямым переносом заряда от внутренних дефектных ловушек к редкоземельным центрам рекомбинации. Влияние добавок ионов меди и иттербия на сцинтилляционные свойства ортогерманата висмута показано в [341]. Область гомогенного и гетерогенного захвата примесей, точечных и линейных дефектов, связанных с люминесценцией чистых монокристаллов Bi4Ge30i2, а также допированных ванадием, иттербием, хромом и железом, изучены в [342]. Исследован спектральный состав быстрой катодолюминесценции. Обнаружены изменения интенсивности и длины волны катодолюминесценции в зависимости от типа примесей и конфигурации дислокаций. [c.297]

    В качестве изоморфных примесей в природном цирконе могут присутствовать небольшие количества самых разнообразных элементов (U, Th, 2TR, Nb, Са, Mg, Мп, Fe, Ti, Р, Al, Se, Na и др.). Циркон представляет определенный структурный тип, к которому принадлежат силикаты торит ThSi04 и коффинит USi04. Из TR наиболее часто встречаются в цирконах иттербий, лантан, лютеций, иттрий, реже — тулий, эрбий, гольмий, диспрозий, гадолиний. Содержание TR колеблется от сотых долей процента до нескольких процентов. Гафний, постоянно присутствующий во всех цирконах как изоморфная примесь, чрезвычайно близок к цирконию по своим кристаллохимическим свойствам. Однако существует определенный предел в относительном содержании Hf в цирконе (отношение Zr/Hf<20), выше которого происходит расщепление кристаллов. У цирконов, содержащих гафний, повышается показатель преломления и увеличивается плотность. [c.237]


Смотреть страницы где упоминается термин Иттербий свойства: [c.120]    [c.144]    [c.322]    [c.169]    [c.373]    [c.56]    [c.348]    [c.59]    [c.75]    [c.94]    [c.557]    [c.192]    [c.606]    [c.237]    [c.34]    [c.94]    [c.557]    [c.348]   
Общая и неорганическая химия (1981) -- [ c.604 ]




ПОИСК





Смотрите так же термины и статьи:

Иттербий



© 2025 chem21.info Реклама на сайте