Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стабилизация покрытия

    Для улучшения технологических и физико-механических свойств кремнийорганических покрытий используют специальные отвердители. К ним предъявляют следующие требования снижение температуры и времени отверждения, отсутствие отрицательного влияния на процесс старения пленки полимера (желательна стабилизация покрытия при высоких температурах), отсутствие изменений цвета и внешнего вида покрытий при нагревапии, обеспечение достаточной жизнеспособности материала (не мепее 6—8 ч) после введения отвердителя. [c.191]


    Покрытия из пентапласта, как правило, ровные, твердые, однородные в непигментированном виде светлые прозрачные или слегка мутноватые из-за кристаллизации полимера. В случае плохой стабилизации покрытия окрашены в цвета от желтого до темно-коричневого.. Окраску могут придавать и сами стабилизаторы, особенно аминного типа. [c.116]

    Применение фосфатов в качестве стабилизаторов для гомо- и сополимеров винил- и винилиденхлорида известно уже давно. В старых патентах для стабилизации покрытий из полимеров винилового ряда рекомендуются кислые фосфаты или сульфиды [20], для свето-и термостабилизации пластифицированного ПВХ — щелочные фосфаты [34]. Содержащееся в полимерах железо удаляют при обработке раствором фосфата в виде водной дисперсии [156, 269, 2147]. [c.151]

    Гетерогенные ингибиторы представляют особый интерес для стабилизации реактивных топлив, поскольку могут использоваться в виде покрытий в наиболее горячих элементах топливной системы, где гомогенные ингибиторы, растворимые в топливе, малоэффективны. Кинетические закономерности ингибирующего действия материалов при окислении топлив изучены [c.213]

    На процесс накипеобразования оказывают влияние материал трубок испарителя, чистота обработки их поверхности, температура, скорость движения раствора и пр. В арсенал методов борьбы с накипью можно включить применение зернистых присадок, контактную стабилизацию, стабилизацию подкислением, применение антинакипинов, гидрофобное покрытие поверхности нагрева, умягчение исходного раствора, магнитную и ультразвуковую обработки, применение специальных конструкций аппаратов и др. [c.14]

    Поверхности образцов из стали 35 подвергали пескоструйной обработке металлическим песком до ровного светло-серого цвета. Для улучшения смачивания покрываемых поверхностей в композиции на основе смолы Э-49 вводили 2 в. ч. поливинилбутираля, а для стабилизации вязкости расплава 0,5 в. ч. аэросила. Толщина покрытий составляла 200—300 мкм, и отверждение их вели при температурах 120—150°С (для смол ЭД-5, [c.110]

    Сдвиг покрытия в отдельных местах достигает 15—20% от начальной толщины. Максимальная скорость сдвига наблюдается в период стабилизации грунта и зависит от структуры грунта и климатических условий. [c.52]

    Влияние стабилизаторов на свойства покрытий. Изучение старения и разложения полиэтилена показывает, что в большинстве случаев без соответствующей стабилизации использовать его нецелесообразно. Применение стабилизаторов играет большую роль в современной технике, так как благодаря стабилизации удается получить большое количество технически ценных изделий. Экономический эффект от применения стабилизаторов, несмотря на их высокую стоимость по сравнению с полимерами, может быть очень значительным. Проблемам стабилизации полимеров посвящены монографии и обзорные статьи [7, 44, 451. [c.129]


    В целом стабилизация значительно увеличивает срок службы покрытий пленки из нестабилизированного полиэтилена разрушаются через два месяца. [c.133]

    Продолжительность термообработки влияет на энергозатраты, поэтому необходимо уяснить, при какой продолжительности изотермической прокалки покрытия обеспечивается стабилизация его прочностных качеств. [c.141]

    Уравнение (4.5) позволяет прогнозировать необходимое время термообработки покрытия для достижения стабилизации его прочностных свойств (табл. 4.8). [c.155]

    ССБ часто применяется для стабилизации почв. Это важно при постройке грунтовых дорог, взлетных дорожек для самолетов и других несущих нагрузку земляных покрытий. [c.254]

    Такое же защитное действие на гидрофобные коллоиды оказывают поверхностно-активные вещества (ПАВ), но в этом случае большое значение имеет характер ориентации ПАВ в адсорбционном слое. Устойчивость коллоидных систем е водной среде более высокая, если полярные группы ПАВ адсорбционного слоя обращены в воду, так как только при этом увеличивается гидрофиль-ность поверхности. Установлено, что адсорбционные слои не всегда бывают сплошными. Во многих случаях стабилизация системы наступает при покрытии монослоем всего 40—60% поверхности коллоидных частиц, когда защитный слой имеет прерывный характер. Но максимальная устойчивость некоторых коллоидных систем зависит от образования полного мономолекулярного слоя (например, при добавлении желатина к золям золота или суспензиям кварца). [c.84]

    Далее полученные данные о зависимости степени стабилизации золей от их возраста и концентрации свидетельствовали о том, что наибольшая устойчивость золя Agi имеет место при достижении определенной (по-видимому, близкой к предельной) плотности покрытия коллоидных частиц монослоем адсорбированных молекул алкильных эфиров полиэтиленгликоля. [c.299]

    Эпоксидированные полимеры являются химически реакционноспособными веществами и могут использоваться для проведе 1ИЯ дальнейшей их модификации. Так, при их реакции с ароматическими аминами получаются привитые антиоксиданты, способствующие лучшей стабилизации полимеров, чем их соответствующие низкомолекулярные аналоги. Сами эпоксидированные полимеры обладают повышенной адгезией к металлам и другим полярным поверхностям, что позволяет применять их в качестве покрытий и клеевых композиций. [c.285]

    Таким образом, при использовании слабого влагопоглотителя необходима высокая скорость адсорбции на его поверхности. Поскольку в настоящее время такой влагопоглотитель не известен, то на практике пошли по другому пути, — по пути замедления процессов адсорбции на поверхности кристалла полупроводника. Последнее достигается покрытием р—п перехода различными лаками. При этом скорость адсорбции значительно уменьшается, что позволяет поддерживать на поверхности кристалла примерно постоянную концентрацию молекул воды. Изложенный способ стабилизации параметров позволяет использовать в корпусе прибора атмосферу с оптимальной относительной влажностью и обеспечивает высокие значения коэффициента усиления р и низкий уровень обратных токов. Однако метод покрытия р—п перехода лаком не может обеспечить высокую надежность полупроводниковых приборов, так как при частых изменениях температуры такое покрытие растрескивается и в этих местах возможна быстрая адсорбция влаги. [c.216]

    В лиофобных золях поверхность коллоидных частиц является резкой границей раздела двух фаз и обладает свободной поверхностной энергией, определяющей возникновение адсорбционных слоев на поверхности. Эти слои могут быть образованы молекулами поверхностно-активных веществ на поверхности коллоидных частиц. Но при этом большое значение имеет характер ориентации поверхностно-активных молекул в адсорбционном слое. Адсорбционные слои могут покрывать не всю поверхность частиц. Часто стабилизация достигается при покрытии монослоем всего 40...60% поверхности коллоидных частиц, когда защитный слой имеет прерывный (в форме островков) характер. [c.338]

    Приведем два ярких примера использования ПАВ для стабилизации сложных дисперсных систем различной природы в качестве моющих средств и для микрокапсулирования различных веществ — покрытия их тонким слоем непроницаемой (или ограниченно проницаемой) защитной оболочки. [c.302]

    Нанесение битумных покрытий при обычных температурах (без подогрева) при грунтовании, наложении липкого слоя, создании водоизолирующих картонов, укупорке швов дорожных покрытий весьма удобно. Для этих целей применяют и битумные эмульсии (анионные, имеющие щелочную реакцию — pH 8—12, и катионные, имеющие кислую реакцию — pH 2—6)—дисперсии некоторых битумов со стабилизирующими присадками в воде Битумную эмульсию используют также для стабилизации почвы в местах, где наблюдается эрозия, на насыпях, горных склонах, на местностях с крутым рельефом. Стоимость нанесения эмульсионных покрытий ниже стоимости укладки горячей смеси. Расход эмульсии 1—2,5 л/м (0,001—0,0025 м /м ) покрытия. Адгезия эмульсий к каменным материалам выше, чем обычных битумов, а по сравнению с разжиженными битумами их преимущество заключается в том, что они негорючи и их можно наносить на влажные поверхности минеральных веществ. После укладки покрытия с применением битумных эмульсий движение автотранспорта восстанавливается через 1—4 ч. [c.298]


    Эмалирование, катодная защита, деаэрация и десорбционное обескислороживание воды Лакокрасочные покрытия, горячее цинкование, эмалирование, стабилизация, деаэрация, десорбционное обескислороживание воды, применение ингибиторов коррозии [c.93]

    Полимерные материалы подверженны естественному старению, в особенности под действием ультрафиолетового солнечного излучения, кислорода воздуха и тепла. Стойкость против старения можно повысить добавкой стабилизаторов. Поскольку стойкость полимерных материалов покрытия против старения существенно сказывается на их эффективности и на сроке службы, в особенности при высоких рабочих температурах, оценка материалов покрытия также и в этом аспекте может иметь важное значение. В качестве методов оценки хорошо зарекомендовали себя (применительно к полиэтиленовым покрытиям) измерения относительного удлинения при разрушении и индекс оплавления после ускоренного старения при повышенной температуре и интенсивном ультрафиолетовом облучении или на горячем воздухе [12]. Существенные изменения этих показателей могут рассматриваться как начало повреждения материала. На рис. 5.4 представлены результаты таких измерений на полиэтиленовых покрытиях с различной степенью стабилизации [3]. У полностью стабилизированного полиэтилена (с до-бавкой стабилизатора й сажи) после испытания продолжительностью до 6000 ч никаких существенных изменений не происходит, тогда как при нестабилизированном или лишь частично стабилизированном покрытии уже через 100—1000 ч отмечаются явления деструкции, что на практике при хранении на открытом воздухе или при работе с повышенными температурами может привести к повреждениям вследствие образования трещин. [c.158]

    Перспективным направлением в стабилизации покрытий на основе фторорганических сополимеров может оказаться введение в раствор сополимера соединений, способных разлагаться при температурах сушки покрытия с образованием элементарного фтора. Хорошо известно, что термостойкость фтпрорг.дииче-ских соединений повышается в результате фторирова- [c.258]

    Недостатком покрытий на основе перхлорвиниловой смолы является их неустойчивость при воздействии температуры свыше 100°. В этих условиях происходит разложение смолы с отщеплением хлористого водорода и образованием непредельных связей. При нагреве перхлорвиниловая смола изменяет свою первоначальную окраску и постепенно. чернеет. При эксплуатации покрытий в условиях атмосферы также происходят значительные изменения этой смолы. Для стабилизации покрытий, содерл-сащих перхлорвиниловую смолу, применяют эпоксидированные масла, эпоксиэфиры, оловоорганические соединения, соли свинца и других металлов, а также Т102 (рутильной модификации), дигидрооксибензофенон и 2,4-диоксиацетофенон два последних стабилизатора отличаются наибольшей эффективностью. [c.128]

    Интересным фактом является возможность стабилизацип эмульсий с помощью высокодисперсных порошков. Механизм нх действия аналогичен механизму действия ПАВ. Порощки с достаточно гидрофильной поверхностью (глина, кремнезем и др.) стабилизируют прямые эмульсии. Гидрофобные порошки (сажа, гидрофобизированный аэросил и др.) способны к стабилизации обратных эмульсий. Частицы порошка на поверхности капель эмульсий располагаются так, что большая часть их поверхности находится в дисперсионной среде. Для обеспечения устойчивости необходимо плотное покрытие порошком поверхности частицы. Очевидно, что, если смачивание частиц порошка-стабилизатора средой и дисперсной фазой будет сильно различаться, то стабилизации не произойдет и весь порошок будет находиться в объеме фазы, которая его хорошо смачивает. [c.348]

    Изучение эффекта стабилизации при облучении пленок светом. тампы ПРК-4 при температуре +60—(4-70) С показало, что стабилизаторы продлевают время до разрушения покрытия (нестабилизированные покрытия разрушились через 100 ч). [c.133]

    Ван-дер-Ваарден (см. ссылки 10 и 97) установил, что дисперсии газовой сажи в алифатических углеродах стабилизуются ароматическими соединениями. Особенно это относится к ароматическим ядрам, связанным с длинной алкильной цепью. Согласно Ван-дер-Ваардену, поверхности частиц газовой сажи плотно покрыты полярными группами С—О. Такого рода диполи притягивают поляризованные молекулы или же молекулы, способные поляризоваться. Соответственно с эффектом Керра, ароматические молекулы проявляют еще более тесное взаимодействие с полярными группами С—О. Благодаря пространственному препятствию , т. е. благодаря приданию устойчивости путем сольватации или защитного коллоидного действия алкильные боковые цепи не дают частицам близко подходить друг к другу. При этом следует отметить, что эффективность стабилизации возрастает по мере либо увеличения длины боковой алкильной цепи, либо увеличения числа боковых цепей. [c.106]

    Для катализаторных покрытий на основе УДП оксидов металлов и 30%-го раствора полиметилфенилсилоксановой смолы в толуоле наблю-данось снижение механической прочности покрытий в первые 5-8 ч тер-мс обработки с последующей стабилизацией прочности покрытия (рис. 4.8 . 10), [c.142]

    Лиофобные эмульсии термодинамически неустойчивы и требуют специальной стабилизации. Ее можно достичь тремя путями 1) созданием двойного электрического слоя, что бывает, например, в разбавленных эмульсиях 2) образованием на поверхности частиц дисперсной фазы сольватного слоя, препятствующего коалесценции 3) образованием на поверхности частиц со стороны дисперсионной среды стабилизируюпдей адсорбционной пленки, препятствующей коалесценции механически. Такие пленки могут быть образованы либо молекулярными коллоидами типа высокомолекулярных соединений (желатина, каучук), либо полуколлоидами типа мыл. Эти вещества, адсорбируясь, образуют лиогель, обладающий значительной механической прочностью. Прочность таких пленок зависит от концентрации эмульгатора. Существует оптимум структурно-механических свойств, выше и ниже которого система становится неустойчивой. Наличие такого оптимума прочности связано с подвижностью адсорбционного слоя, необходимой для покрытия случайных разрывов в пленке. В этом типе стабилизирующего действия эмульгатора хотя и [c.79]

    Битумные и дегтевые вяжущие обладают целым комплексом полезных свойств они термопластичны, водонепроницаемы, погодоустойчивы и являются хорошими изоляторами. К тому же деготь, например, — хороший антисептик. Поэтому они широко применяются в строительстве. Например, при строительстве дорог используется до 75% всего производства органических вяжущих. Это объясняется тем, что дорожное покрытие из бетона на этих вяжущих отличается высокой износоустойчивостью, прочностью при различных климатических и погодных условиях и легкостью очистки дорожного полотна. Органические вяжущие на основе битума и дегтя находят широкое применение также при сооружении полов промышленных зданий, в качестве кровельных, гидро-, тепло- и пароизоляционных покрытий и материалов, приклеивающих мастик, покрасочных составов. Например, органические вяжущие, обладающие высокой адгезией к различным материалам и гидрофобными свойствами, применяют в качестве гидроизоляционных обмазок для защиты фундаментов зданий, трубопроводов, траншей, водохранилищ, бассейнов и т. д. Битум используется в качестве связующего материала при производстве плит из минеральной ваты, котерые применяются для теплоизоляции зданий, холодильных установок и трубопроводов. Органические вяжущие могут использоваться для защиты от коррозии металлов, бетона в виде, например, черных лаков, при сооружении защиты от радиоактивного излучения применяются они и для стабилизации грунтов. Не обходятся без органических вяжущих и другие области народного хозяйства, например лакокрасочная, нефтехимическая (производство пластмасс), электротехническая, металлургическая и др. [c.60]

    Стабилизацию объясняют также действием энтропийного фактора стабилизации при сближении поверхностей, покрытых адсорбированными длипноцепочечными молекулами ПАВ, уменьшается свобода теплового микроброуновского движения цепей, что приводит к уменьшению энтропии системы и делает процесс сближения частиц энергетически невыгодным. [c.128]

    Стеклянные шарики. Непористые стеклянные шарики имеют малую удельную поверхность 0,01 м /г и весьма однородный размер. Они обладают малой адсорбционной и каталитической активностью. На них можно нанести однородную тонкую пленку жидкой фазы. Максимальное количество жидкой фазы зависит от диаметров шариков и изменяется в пределах 0,05—2% (масс.). Для стабилизации толщины пленки (во избежание стекания жидкой фазы с шариков) на внешней поверхности стеклянных шариков создают пористый адсорбционный слой путем специального покрытия шариков тонкидиснерсными частицами или травлением их кислотами и щелочами. На колонках, заполненных стеклянными шариками, достигается высокая эффективность, которая не уменьшается с увеличением линейной скорости потока газа-носнтеля из за быстрого массообмена в тонкой однородной пленке. [c.198]

    Хорошие цинковые покрытия получаются при значениях pH = 3,5—4,5. Более высокая кислотность вызывает повышенный расход анодов и накопление цинка в растворе при низкой кислотности (рН>4,5) возникает опасность выпадения гидроокиси цинка, что приводит к образованию грубого катодного осадка. С целью стабилизации величины pH в электролит вводится добавка А12(50 4)з 18Н2О или КА1(804)2 12НгО, гидролиз которых начинается при pH = 4,0—4,5. [c.170]

    Тенденция более родственной к стабилизирующему веществу фазы превращаться в дисперсионную среду наглядно проявляется в эмульсиях, стабилизованных тонкодисперсными порошками. Такая стабилизация возможна при ограниченном избирательном смачивании порошка, т.е. при конечном краевом угле , большем О, но меньше 180°. При этом порошки обладают способностью к стабилизации той фазы, которая хуже избирательно смачивает частицы, тогда как более родственная фаза оказывается дисперсионной средой. Причины этого становятся ясны из рассмотрения рис. X—14. В случае капель воды, покрытых гидрофобным порошком, например углем, в масляной фазе вода оттесняется из (Прослоек между частицами вследствие гидрофобности угля, и при столкновении капли воды не могут прийти в непосредственный конта кт. Наоборот, гидрофильный порошок (например, мел) защищает своеобразной броней масляную фазу и не, позволяет сопри р оснуться аплям масла в водной дисперсионной среде. Поскольку мерой фнльности (родственности) порошка по отношению к внешней фазе является краевой угол в условиях избирательного смачивания или отношение теплот смачивания данной твердой фазы двумя жидкостями (см. 3 гл. И1), эти величины представляют собой аналог ГЛБ молекул ПАВ. [c.288]

    Определяя по известным методикам псевдостатический модуль материала, исходя из напряжения, характеризующего момент относительной стабилизации процесса релаксации напряжения, можно оценить увеличение жесткости материала покрытия в сравнении с исходным. [c.39]

    Процесс восстановления серебра довольно легко протекает не только на поверхности обрабатываемых форм, но и во всем объеме раствора Поэтому растворы серебрения мвлостабильны, для их стабилизации предложено вводить различные добавки, желатину, пиридин, соединения хрома, а также соединения меди, ртути и свинца. Покрытия получаются очень тонкие, не превышающие 1 мкм. Для увеличения толщины слоя можно применять контакт из алюминия или магния [c.82]

    В то же время, KaiK показали работы А. Б. Таубмана и его сотрудников [111, 132, 156], максимальное структурообразование возникает при частичном покрытии адсорбционным слоем поверхности, которое отвечает некоторой оптимальной мозаичности при вполне определенном соотношении лиофобных и лиофильных участков. По мере лиофилизации поверхности частиц возрастает их смачиваемость, что обусловливает пептизацию частиц в среде. Предельная стабилизация-блокировка контактов адсорбционными слоями облегчает разрушение связей механическими воздействиями. [c.208]


Смотреть страницы где упоминается термин Стабилизация покрытия: [c.153]    [c.129]    [c.179]    [c.558]    [c.41]    [c.180]    [c.74]    [c.204]    [c.138]    [c.67]   
Катодная защита от коррозии (1984) -- [ c.158 ]




ПОИСК





Смотрите так же термины и статьи:

Стабилизация пленкообразователей и покрытий

Стабилизация полимерных покрытий

Старение и стабилизация пленкообразователей и покрытий

Физико-химические аспекты адгезии металлических поверхностей к лакокрасочным покрытиям и ее стабилизации в сероводородсодержащих водных средах



© 2025 chem21.info Реклама на сайте