Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные реакции нейтрализация

    Реакциями нейтрализации в водных растворах являются все реакции между кислотами и основаниями, одним из продуктов которых является вода. Сущность реакции нейтрализации заключается в переносе иона водорода (протона) от кислоты к основанию. Кислотноосновные реакции сопровождаются изменением концентрации ионов Н+. Определение последней играет важную роль в методах кислотно-основного титрования. На практике очень часто вместо концентрации ионов водорода [Н+1 используют водородный показатель pH = = — lg [Н+]. Объясняется это тем, что физико-химические методы позволяют непосредственно определить именно pH раствора. По изменению pH раствора следят за [c.93]


    Реакции без изменения состояния окисления элементов чаще всего протекают в газовых и жидких растворах с участием ионов. Как известно, ионные реакции обратимы, и теоретически каждой системе ионов при данных условиях отвечает определенное состояние равновесия. Смещение химического равновесия (иногда практически нацело) происходит при уменьшении концентрации каких-либо ионов за счет образования относительно мало ионизирующихся молекул или комплексных ионов малорастворимых или летучих соединений правило Бертолле). Так, в реакции нейтрализации ионное равновесие смещается в сторону образования мало ионизирующихся молекул растворителя, например в водном растворе  [c.207]

    Таким образом, реакции нейтрализации любой сильной кислоты любым сильным основанием сводятся к одному и тому лее процессу — к образованию молекул воды из ионов водорода и гидрок-сид-ионов. Ясно, что тепловые эффекты этих реакций тоже должны быть одинаковы. [c.246]

    Реакции нейтрализации и гидролиза. К обменным реакциям в растворах относится, в частности, взаимодействие между кислотами и основаниями, в результате которого образуются соль и вода. Такие реакции называются реакциями нейтрализации. В соответствии с закономерностями протекания ионных реакций нейтрализация доходит до конца только тогда, когда единственным малодиссоциированным веществом в системе является вода, например [c.272]

    В основе многих методов объемного анализа лежат реакции ионного обмена. К их числу относятся и кислотно-основные реакции (реакции нейтрализации), с помощью которых определяют кислоты (алкалиметрия) и основания (ацидиметрия). [c.93]

    Реакции нейтрализации любых других сильных кислот и оснований протекают аналогично. Поскольку соль полностью диссоциирует на ионы, реакция в любом случае протекает лишь между ионами Н+и ОН т. е. процесс нейтрализации в общем виде выражается одним и тем же уравнением  [c.262]

    Напишите сокращенным молекулярно-ионным способом примеры уравнений реакций нейтрализации [c.67]

    Метод СФ-титрования позволяет использовать реакции образования малоустойчивых комплексов, реакции нейтрализации слабых кислот и оснований, реакции окисления — восстановления систем с малой константой равновесия, так как для нахождения К. Т. Т. можно применять экстраполяцию участков кривых, соответствующих избытку титруемого иона и реагента (полное смещение равновесия реакции в одну сторону, поэтому зависимость D — f ) прямолинейна). [c.478]

    Соединение, которое, подобно BFj, способно присоединять (акцептировать) электронную пару, называется льюисовой кислотой, а всякий поставщик (донор) электронной пары называется льюисовым основанием. Эта терминология вслед за описанной в гл. 5 терминологией Бренстеда призвана еще больше расширить простую теорию кислот и оснований Аррениуса. Согласно теории Аррениуса, кислота представляет собой вещество, образующее в водном растворе ионы водорода, или протоны, а основание-вещество, образующее гидроксидные ионы. Терминология Бренстеда обладает большей общностью кислотой является любое вещество, способное быть донором протонов, а основанием - вещество, способное поглощать (акцептировать) протоны. Чтобы проиллюстрировать различия всех трех систем определений, рассмотрим реакцию нейтрализации между НС1 и NaOH  [c.474]


    Как уже указывалось, реакции нейтрализации сильиы < кислот сильными основаниями, в ходе которых ионы водорода и гидроксид-ионы соединяются в молекулу воды, протекают практически до конца. Реакции же нейтрализации, в которых хотя бы одно из исходных веществ — слабый электролит и при которых молекулы малодиссоциирующих веществ имеются не только в правой, но и в левой части ионно-молекулярного уравнения, протекают не до конца. Они доходят до состояния равновесия, при котором соль сосуи ествует с кислотой и основанием, от которых она образована. Поэтому уравнения подобных реакций правильнее записывать как обратимые реакции  [c.249]

    В 1887 г. Аррениусом была предложена теория электролитической диссоциации (см. гл. IV), которая по-новому решила вопрос о природе кислот и оснований. Согласно этой теории кислота — это вещество, диссоциирующее в растворе с образованием ионов Н . Все общие свойства кислот — кислый вкус, действие на металлы, индикаторы и т. п. являются свойствами ионов водорода. Основание—это вещество, диссоциирующее с образованием ионов ОН . Реакция нейтрализации сводится к взаимодействию водородных и гидроксид-ионов, приводящему к образованию недиссоциированных молекул воды. [c.232]

    Реакция между равными количествами Н+(водн.) и ОН"(водн.) с образованием воды приводит к исчезновению как кислотных, так и основных свойств. Эта реакция нейтрализации может быть представлена полным ионным уравнением например, для нейтрализации соляной кислоты НСКводн.) гидроксидом натрия NaOH (водн.) [c.426]

    Данные по спектрам поглощения растворов солей показали, что молярные коэффициенты поглощения при разных длинах волн, рассчитываемые как DJ , не изменяются в широкой области концентраций электролита фх —оптическая плотность при длине волны X, с—концентрация раствора исследуемого электролита). Этот факт не мог быть объяснен теорией электролитической диссоциации Аррениуса, поскольку с уменьшением концентрации электролита должно было происходить увеличение степени диссоциации и, следовательно, изменение спектров поглощения. Полная диссоциация сильного электролита объясняла постоянство молярных коэффициентов поглощения, поскольку при всех концентрациях раствора светопоглощающими частицами оставались одни и те же ионы. Аналогичный характер имеет концентрационная зависимость вращения плоскости поляризации и ряда других свойств растворов сильных электролитов. Теория электролитической диссоциации не может объяснить постоянство теплот нейтрализации хлорной, соляной и других сильных кислот гидроксидами щелочных металлов. Однако это можно объяснить полной диссоциацией реагентов при всех концентрациях и протеканием реакции нейтрализации как взаимодействия ионов Н+ и ОН" по схеме Н+ + ОН = НгО. [c.438]

    Влияние диффузионных процессов на скорость реакции зависит от природы и количества фаз, находящихся в реакционной системе, от величины скорости данной реакции и от типа процесса (непрерывный или периодический). Когда скорость реакции очень велика (например, ионная реакция нейтрализации кислоты основанием, процессы разложения взрывного характера, горение), диффузионные процессы слабо влияют на общую скорость реакции. [c.23]

    Нейтрализация слабой кислоты сильным основанием (или слабого основания сильной кислотой) сопровождается одновременной диссоциацией слабого электролита с тепловым эффектом ДЯд сс. Эта теплота складывается из эндотермического эффекта диссоциации и экзотермического эффекта гидратации ионов. Сумма последних двух тепловых эффектов — в зависимости от природы электролитов — различается как знаком, так и значением. Вследствие этого теплота нейтрализации отличается от теплоты реакции образования воды из ионов (теплота нейтрализации H N едким натром равна — 10,290 кДж/моль, Н3РО4 едким кали равна — 63,850 кДж/моль). Теплоту диссоциации вычисляют по уравнению  [c.49]

    Ниже приведены примеры написания уравнений реакций нейтрализации сокращенным молеку-лярно-ионным способом  [c.67]

    Реакторы, размеры которых определяются продолжительностью процессов массообмена (продолжительность химических реакций в этих аппаратах обычно не превыщает нескольких секунд). К таким процессам относятся все ионные реакции (нейтрализация, солеобразование и т. д.). Тепловой режим работы реакторов этой группы приближается к адиабатическому. При экзотермических процессах тепло реакции расходуется на подогрев реакционной массы и на испарение компонентов, взятых в избытке (так, при хлорировании бензола испаряется бензол, при нейтрализации бензолсульфокислоты испаряется вода и т. д.). [c.127]

    В первом случае реакция происходит практически при каждом столкновении ионов и скорость ее очень велика. Таково, например, взаимодействие между водородными и гидроксидными ионами - реакция нейтрализации кислоты щелочью. Скорость реак- [c.153]


    Как видно из приведенных схем, химическая стадия сводится к быстрой ионной реакции нейтрализации и значительно более медленному фазовому превращению новообразований. В отличие от нее первая и последняя стадии — диффузионные, причем первая характеризуется большим значением коэффициента диффузии (подвиж-чой протон), тогда как при переносе продуктов реакции соответствующих Солей коэффициент их диффузии меньше. [c.24]

    ЗдесьА в — константа диссоциации для реакции В+НОН . ВН" +ОН. Этот результат соответствует данным, полученным для ацетона закон соблюдается вследствие того, что взаимодействие енолят-иона с ацетоном относительно медленнее реакции нейтрализации его ВН" (или любой другой слабой кислотой, находящейся в системе). [c.493]

    В реакциях, в которых участвующие вещества обмениваются ионами, не изменяя заряда ионов (реакции нейтрализации, реакции образования малорастворимых осадков и др.), величина эквивалентного веса равна частному от деления молекулярного веса вещества на суммарный заряд ионов, которыми обменивается каждая молекула данного вещества в рассматриваемой реакции. Покажем это на примере следующих реакций  [c.87]

    К обменным ионным процессам относятся также реакции нейтрализации, в результате которых образуется слабый электролит— вода, например  [c.262]

    Титриметрические методы подразделяются на две большие группы. В первую группу входят методы, основанные на ионных реакциях нейтрализация, осаждение и комплексообразование. Во вторую группу входят окислительно-восстановительные методы, основанные на реакциях окисления — восстановления, которые связаны с переходом электронов от одной частицы к другой. Применяемые реакции должны удовлетворять ряду требований. Реакция должна проходить количественно по определенному уравнению без побочных реакций. Реакция должна протекать с достаточной скоростью, поэтому необходимо создавать оптимальные условия, обеспеч1шающие быстрое течение реакции концентрацию реагирующих веществ и среду, в которой протекает реакция, температуру и в ряде случаев катализатор. Установление точки эквивалентности должно производиться достаточно надежно. Во многих случаях для этого применяют специальный индикатор. [c.325]

    Применение хингидронного электрода также ограничено целым рядом недостатков. Этот электрод не может применяться для измерения pH жидкостей, в которых его значение выше 8, так как в щелочной среде хингидрон ведет себя как кислота и взаимодействует с гидроксид-ионами (реакция нейтрализации). Хингидронный электрод обладает так называемой солевой ошибкой, т. е. его показания сильно изменяются в присутствии значительного количества различных солей. Неустойчивость показаний его обнаруживается также в случае присутствия в измеряемом растворе сильной окислительно-восстановительной системы. [c.306]

    Написать в молекулярно-ионной форме уравнения реакций нейтрализации и указать, какая из них протёкает обратимо, а какая — необратимо. Указать также реакцию среды (нейтральная, кислая или щелочная) при условии, если основание и кислота взяты в строго эквивалентных количествах. [c.127]

    Взаимодействие простейших ионов (типа нейтрализации кислот и осаждения солей) в большинстве случаев протекает так быстро, что с позиций расчета реакторов их можно принять за мгновенные и учитывать лишь скорости макроскопических процессов (таких, как смешение). Однако в сложных реакциях вследствие наличия в них ионных лимитирующих стадий могут наблюдаться отклонения от простейших кинетических закономерностей, вызванные изложенными в разделах 2.3 и 2.4 обстоятельствами. [c.39]

    В краткой ионной форме уравнение реакции нейтрализации записывается,следующим образом  [c.31]

    Катализаторы со временем могут терять свою активность. Это объясняется тем, что обычно побочные химические процессы, в результате которых каталитически активный центр — атом, молекула, ион, каталитический центр на поверхности —блокируется, выводится из сферы реакции. Такими процессами могут быть реакции нейтрализации в кислотно-основном катализе, комплексообразования, когда катализатор в виде ионов комплексуется с определенными лигандами и выходит из сферы реакции реакции образования нерастворимых соединений и др. Потеря каталитической активности может быть обусловлена химическим распадом в результате термических или фотохимических процессов. Явления, когда активность катализатора резко уменьшается при прибавлении незначительных количеств некоторых веществ, иногда падая до нуля, называется отравлением катализаторов. Вещества, резко понижающие активность катализатора, называются каталитическими ядами. Сильное действие каталитического яда объясняется тем, что в большинстве каталитических процессов концентрация катализатора очень мала и для блокирования каталитических центров нужны незначительные количества каталитического яда. [c.622]

    Ион Еодорода может, таким образом, связаться в молекулу уксусной кислоты или в молекулу воды. Ионы СНзСОО- и ОН как бы конкурируют друг с другом в связывании иона водорода. Поэтому в данном случае реакция нейтрализации доходит ие до конца, а до состояния равновесия  [c.255]

    Данные табл. 5.5 свидетельствуют о том, что реакция нейтрализации кислых соединений щелочью является ионной и при аффективном контактировании завершается за несколько секунд. [c.218]

    Чтобы определить основность фосфористой кислоты, следует рассчитать, сколько ионов или грамм-ионов водорода отщепляет в растворе соответственно молекула или грамм-молекула кислоты. Для этого прежде всего найдем, сколько грамм-эквивалентов щелочи ушло в реакцию нейтрализации. [c.152]

    Известно много реакций образования солей, аналогичных реакции нейтрализации, однако происходящих без участия ионов Н" или ОН . Простейшим примером такой [c.232]

    Как видно, гидролиз представляет собой реакц нейтрализации. Протекающая при титровании реакци. чае окажется обратимой и не будет доходить до кислоты и щелочи останется в растворе в свободн В точке эквивалентности количества свободных NaOH будут, конечно, эквивалентны друг другу. Н как уксусная кислота, присутствующая главным неионизированных молекул СНдСООН, будет отдав очень мало Н+-ионов, едкий натр, диссоциированнь ностью, создаст гораздо большую концентрацию ОН творе. [c.237]

    Представления о кислотах и основаниях. Исторически (1663 г.) Бойлю принадлежит первое химическое определение кислот как веществ со следующими свойствами Они растворяют многие вещества, они осаждают серу из ее растворов в едких щелочах, они заставляют синие растительные краски превращаться в красные, они теряют все эти свойства, приходя в контакт с едкими щелочами Однако существование кислот и щелочей (оснований) и их свойства были известны с древности и на протяжении всех средних веков, потому мы можем рассматрийать определение Бойля как констатацию общепринятой концепции. Обращает на себя внимание ясное указание на использование красителей как индикаторов и на реакцию кислот с основаниями. К 1840 г. представление о кислотах было уже сформулировано Дэви (1811 г.) и Либихом (1838 г.) как о соединениях, содержащих водород, в которых водород может быть замещен металлами . К 1890 г. эта концепция была изменена в связи с рождением теории электролитической диссоциации Аррениуса. Кислота была признана соединением, ионизируемым водой с образованием водородных ионов, а основание — дающим гидроксильные ионы. Реакция нейтрализации рассматривалась как ведущая к образованию соли и водЬп [c.44]

    Теплота нейтрализации. Установлено, что реакция нейтрализации моля любой сильной одноосновной кислоты (НС1, HNO3 и т. п.) сильными основаниями (NaOH, КОН и т. п.) в достаточно разбавленных водных растворах сопровождается почти одинаковым экзотермическим тепловым эффектом, при 298 К незначительно отклоняющимся от —55,900 (при 291 К —57,363) кДж/моль. Этот тепловой эффект отвечает реакции образования жидкой воды из гидратированных ионов водорода и гидроксила  [c.49]

    Ионная реакция нейтрализации протекает необраТйУк10 между сильной кислотой и сильным основанием, например [c.203]


Смотреть страницы где упоминается термин Ионные реакции нейтрализация: [c.164]    [c.119]    [c.164]    [c.148]    [c.153]    [c.247]    [c.130]    [c.225]    [c.197]    [c.176]    [c.181]    [c.267]   
Введение в радиационную химию (1967) -- [ c.131 ]




ПОИСК





Смотрите так же термины и статьи:

Нейтрализация

Реакции нейтрализации



© 2024 chem21.info Реклама на сайте